Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations
Hofmanová M, Zhu R, Zhu X (2024)
Electronic Journal of Probability 29: 195.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hofmanová, MartinaUniBi;
Zhu, Rongchan;
Zhu, Xiangchan
Einrichtung
Abstract / Bemerkung
We study the question of non-uniqueness of Leray-Hopf solutions to stochastic forced Navier-Stokes equations on R3R3 starting from zero initial condition. Specifically, we consider a linear multiplicative noise and the equations are perturbed by an additional body force f. This type of noise is particularly appealing due to the regularization by noise phenomena established in [RZZ14], which provides global uniqueness for arbitrary f is an element of L-2 (0,T;Hs-1) for s > 3/2 with high probability. Based on the ideas of Albritton, Bru & eacute; and Colombo [ABC22], we prove that there exists a force f is an element of L-1 (0,T;L-p) p<3, so that non-uniqueness of local-in-time probabilistically strong Leray-Hopf solutions as well as joint non-uniqueness in law of Leray-Hopf solutions on R+ hold true. In the deterministic setting, we show that the set of forces, for which Leray-Hopf solutions are non-unique, is dense in L-1(0,T;L-2). In addition, by a simple controllability argument we show that for every divergence-free initial condition in L-2 there is a force so that non-uniqueness of Leray-Hopf solutions holds.
Stichworte
Stochastic Navier-Stokes equations;
Nonuniqueness in law;
Leray-Hopf;
solutions
Erscheinungsjahr
2024
Zeitschriftentitel
Electronic Journal of Probability
Band
29
Art.-Nr.
195
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2999968
Zitieren
Hofmanová M, Zhu R, Zhu X. Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations. Electronic Journal of Probability . 2024;29: 195.
Hofmanová, M., Zhu, R., & Zhu, X. (2024). Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations. Electronic Journal of Probability , 29, 195. https://doi.org/10.1214/24-EJP1259
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. 2024. “Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations”. Electronic Journal of Probability 29: 195.
Hofmanová, M., Zhu, R., and Zhu, X. (2024). Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations. Electronic Journal of Probability 29:195.
Hofmanová, M., Zhu, R., & Zhu, X., 2024. Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations. Electronic Journal of Probability , 29: 195.
M. Hofmanová, R. Zhu, and X. Zhu, “Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations”, Electronic Journal of Probability , vol. 29, 2024, : 195.
Hofmanová, M., Zhu, R., Zhu, X.: Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations. Electronic Journal of Probability . 29, : 195 (2024).
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. “Non-uniqueness of Leray-Hopf solutions for stochastic forced Navier-Stokes equations”. Electronic Journal of Probability 29 (2024): 195.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in