An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis
Düvel J, Lampe D, Kirchner M, Elkenkamp S, Cimiano P, Düsing C, Marchi H, Schmiegel S, Fuchs C, Claßen S, Meier K-L, et al. (2025)
JMIR Human Factors 12: 11 Seiten.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download

Autor*in
Düvel, JulianeUniBi
;
Lampe, DavidUniBi
;
Kirchner, Maren;
Elkenkamp, SvenjaUniBi;
Cimiano, Philipp;
Düsing, ChristophUniBi
;
Marchi, HannahUniBi
;
Schmiegel, Sophie;
Fuchs, ChristianeUniBi
;
Claßen, Simon;
Meier, Kirsten-Laura;
Borgstedt, RainerUniBi
Alle





Alle
Einrichtung
Zentrum für Statistik
Center of Excellence - Cognitive Interaction Technology CITEC > Semantische Datenbanken
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Data Science
Fakultät für Wirtschaftswissenschaften > Department Empirische Methoden
Fakultät für Gesundheitswissenschaften > Centre for ePublic Health Research
Fakultät für Gesundheitswissenschaften > AG 5 Gesundheitsökonomie und Gesundheitsmanagement
Medizinische Fakultät OWL > AG 101 Anästhesiologie und Intensivmedizin
Technische Fakultät > AG Semantische Datenbanken
Bielefeld Center for Data Science (BiCDaS)
Center of Excellence - Cognitive Interaction Technology CITEC > Semantische Datenbanken
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Data Science
Fakultät für Wirtschaftswissenschaften > Department Empirische Methoden
Fakultät für Gesundheitswissenschaften > Centre for ePublic Health Research
Fakultät für Gesundheitswissenschaften > AG 5 Gesundheitsökonomie und Gesundheitsmanagement
Medizinische Fakultät OWL > AG 101 Anästhesiologie und Intensivmedizin
Technische Fakultät > AG Semantische Datenbanken
Bielefeld Center for Data Science (BiCDaS)
Abstract / Bemerkung
Background:
Antimicrobial resistances pose significant challenges in healthcare systems. Clinical decision support systems (CDSS) represent a potential strategy for promoting a more targeted and guideline-based use of antibiotics. The integration of artificial intelligence (AI) into these systems has the potential to support physicians in selecting the most effective drug therapy.
Objective:
This study aims to analyze the feasibility of an AI-based CDSS pilot version for antibiotic therapy in sepsis patients and identify facilitating and inhibiting conditions for its implementation in intensive care medicine.
Methods:
The evaluation was conducted in two steps, employing a qualitative methodology. Initially, expert interviews were conducted, in which intensive care physicians were asked to assess the AI-based recommendations for antibiotic therapy in terms of plausibility, layout and design. Subsequently, focus group interviews were conducted to examine the technology acceptance of the AI-based CDSS. The interviews were anonymized and evaluated using content analysis.
Results:
With regard to the feasibility of the intervention: The majority of physicians have a positive attitude towards AI-based CDSS. The assessment of AI-based recommendations largely depends on plausibility and professional experience. A central element for the acceptance of the AI-based CDSS was the time factor. A lack of digitization in the clinics was identified as a major inhibiting factor. According to the physicians, the heterogeneous use of antibiotics in practice to date also has a negative impact on the predictive ability of the AI-based CDSS.
Conclusions:
Early integration of users is beneficial for both the identification of relevant context factors and the further development of an effective CDSS. Overall, the potential of AI-based CDSS is offset by inhibiting contextual conditions that impede its acceptance and implementation. The advancement of AI-based CDSS and the mitigation of these inhibiting conditions are crucial for the realization of its full potential.
Stichworte
CDSS;
use case analysis;
technology acceptance;
sepsis;
infection;
infectious disease;
antimicrobial resistance;
clinical decision support system;
decision-making;
clinical support;
machine learning;
ML;
artificial intelligence;
AI;
algo- rithm;
model;
analytics;
predictive models;
deep learning;
early warning;
early detection
Erscheinungsjahr
2025
Zeitschriftentitel
JMIR Human Factors
Band
12
Seite(n)
11 Seiten
Urheberrecht / Lizenzen
eISSN
2292-9495
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2999845
Zitieren
Düvel J, Lampe D, Kirchner M, et al. An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Human Factors. 2025;12:11 Seiten.
Düvel, J., Lampe, D., Kirchner, M., Elkenkamp, S., Cimiano, P., Düsing, C., Marchi, H., et al. (2025). An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Human Factors, 12, 11 Seiten. https://doi.org/10.2196/66699
Düvel, Juliane, Lampe, David, Kirchner, Maren, Elkenkamp, Svenja, Cimiano, Philipp, Düsing, Christoph, Marchi, Hannah, et al. 2025. “An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis”. JMIR Human Factors 12: 11 Seiten.
Düvel, J., Lampe, D., Kirchner, M., Elkenkamp, S., Cimiano, P., Düsing, C., Marchi, H., Schmiegel, S., Fuchs, C., Claßen, S., et al. (2025). An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Human Factors 12, 11 Seiten.
Düvel, J., et al., 2025. An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Human Factors, 12, p 11 Seiten.
J. Düvel, et al., “An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis”, JMIR Human Factors, vol. 12, 2025, pp. 11 Seiten.
Düvel, J., Lampe, D., Kirchner, M., Elkenkamp, S., Cimiano, P., Düsing, C., Marchi, H., Schmiegel, S., Fuchs, C., Claßen, S., Meier, K.-L., Borgstedt, R., Rehberg, S., Greiner, W.: An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis. JMIR Human Factors. 12, 11 Seiten (2025).
Düvel, Juliane, Lampe, David, Kirchner, Maren, Elkenkamp, Svenja, Cimiano, Philipp, Düsing, Christoph, Marchi, Hannah, Schmiegel, Sophie, Fuchs, Christiane, Claßen, Simon, Meier, Kirsten-Laura, Borgstedt, Rainer, Rehberg, Sebastian, and Greiner, Wolfgang. “An AI-Based Clinical Decision Support System for Antibiotic Therapy in Sepsis (KINBIOTICS): Use Case Analysis”. JMIR Human Factors 12 (2025): 11 Seiten.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
humanfactors-2025-1-e66699.pdf
398.08 KB
Access Level

Zuletzt Hochgeladen
2025-03-20T07:02:06Z
MD5 Prüfsumme
655af514f657d7f7a15041c72101d5ab
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 40036494
PubMed | Europe PMC
Suchen in