Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach

Gordeev N, Rehmann U (2024)
European Journal of Mathematics 10(4): 75.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gordeev, Nikolai; Rehmann, UlfUniBi
Abstract / Bemerkung
Let D be a division algebra with an involution star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} and with the centre F and let V be a finite-dimensional vector space with a symmetric or skew-symmetric hermitian form. Further, let h be isotropic and let Pu,Pv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_u, P_v$$\end{document} be the stabilizers of totally isotropic subspaces u,v <= V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u, v \leqslant V$$\end{document} in the group SU(D,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}\hspace{0.55542pt}(D, h)$$\end{document}. In the papers [6, 7] it was considered the "geometrical" description of double cosets PugPv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_u g P_v$$\end{document} where g is an element of SU(D,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in \textrm{SU}\hspace{0.55542pt}(D, h)$$\end{document}. Namely, such a coset is defined uniquely by the dimension and the Witt index of the space u+g(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u + g(v)$$\end{document} (with one exception). The "adherence" of double cosets is also defined by geometrical parameters. It has been proved for the case when star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} is an involution of the first kind (that is, star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} acts trivially on F). In this paper we give the same description of adherence for the cases of involutions of the second kind.
Stichworte
Classical algebraic groups; Parabolic subgroups
Erscheinungsjahr
2024
Zeitschriftentitel
European Journal of Mathematics
Band
10
Ausgabe
4
Art.-Nr.
75
ISSN
2199-675X
eISSN
2199-6768
Page URI
https://pub.uni-bielefeld.de/record/2999809

Zitieren

Gordeev N, Rehmann U. Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach. European Journal of Mathematics . 2024;10(4): 75.
Gordeev, N., & Rehmann, U. (2024). Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach. European Journal of Mathematics , 10(4), 75. https://doi.org/10.1007/s40879-024-00784-8
Gordeev, Nikolai, and Rehmann, Ulf. 2024. “Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach”. European Journal of Mathematics 10 (4): 75.
Gordeev, N., and Rehmann, U. (2024). Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach. European Journal of Mathematics 10:75.
Gordeev, N., & Rehmann, U., 2024. Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach. European Journal of Mathematics , 10(4): 75.
N. Gordeev and U. Rehmann, “Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach”, European Journal of Mathematics , vol. 10, 2024, : 75.
Gordeev, N., Rehmann, U.: Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach. European Journal of Mathematics . 10, : 75 (2024).
Gordeev, Nikolai, and Rehmann, Ulf. “Double cosets of stabilizers of totally isotropic subspaces in a special unitary group: Geometrical approach”. European Journal of Mathematics 10.4 (2024): 75.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar