Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas

Jobst D, Möller AC, Groß J (2024)
Environmetrics .

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jobst, David; Möller, Annette ChristineUniBi ; Groß, Jürgen
Abstract / Bemerkung
Vine copulas are flexible dependence models using bivariate copulas as building blocks. If the parameters of the bivariate copulas in the vine copula depend on covariates, one obtains a conditional vine copula. We propose an extension for the estimation of continuous conditional vine copulas, where the parameters of continuous conditional bivariate copulas are estimated sequentially and separately via gradient-boosting. For this purpose, we link covariates via generalized linear models (GLMs) to Kendall's tau$$ \tau $$ correlation coefficient from which the corresponding copula parameter can be obtained. In a second step, an additional covariate deselection procedure is applied. The performance of the gradient-boosted conditional vine copulas is illustrated in a simulation study. Linear covariate effects in low- and high-dimensional settings are investigated separately for the conditional bivariate copulas and the conditional vine copulas. Moreover, the gradient-boosted conditional vine copulas are applied to the multivariate postprocessing of ensemble weather forecasts in a low-dimensional covariate setting. The results show that our suggested method is able to outperform the benchmark methods and identifies temporal correlations better. Additionally, we provide an R-package called boostCopula for this method.
Stichworte
conditional copula; dependence modeling; ensemble postprocessing; gradient-boosting; variable selection; vine copula
Erscheinungsjahr
2024
Zeitschriftentitel
Environmetrics
ISSN
1180-4009
eISSN
1099-095X
Page URI
https://pub.uni-bielefeld.de/record/2999625

Zitieren

Jobst D, Möller AC, Groß J. Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas. Environmetrics . 2024.
Jobst, D., Möller, A. C., & Groß, J. (2024). Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas. Environmetrics . https://doi.org/10.1002/env.2887
Jobst, David, Möller, Annette Christine, and Groß, Jürgen. 2024. “Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas”. Environmetrics .
Jobst, D., Möller, A. C., and Groß, J. (2024). Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas. Environmetrics .
Jobst, D., Möller, A.C., & Groß, J., 2024. Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas. Environmetrics .
D. Jobst, A.C. Möller, and J. Groß, “Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas”, Environmetrics , 2024.
Jobst, D., Möller, A.C., Groß, J.: Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas. Environmetrics . (2024).
Jobst, David, Möller, Annette Christine, and Groß, Jürgen. “Gradient-Boosted Generalized Linear Models for Conditional Vine Copulas”. Environmetrics (2024).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar