A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values

Burmester A (2025)
Journal of Number Theory 269: 106-137.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We present the tau-invariant balanced quasi-shuffle algebra Gf, whose elements formalize (combinatorial) multiple Eisenstein series as well as multiple q-zeta values. In particular, Gf has natural maps into these two algebras, and we expect these maps to be isomorphisms. Racinet studied the algebra Zf of formal multiple zeta values by examining the corresponding afflne scheme DM. Similarly, we present the afflne scheme BM corresponding to the algebra Gf. We show that Racinet's afflne scheme DM embeds into our afflne scheme BM. This leads to a projection from the algebra Gfonto Zf. Via the above natural maps, this projection corresponds to extracting the constant terms of multiple Eisenstein series or the limit q -> 1 of multiple q-zeta values. (c) 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
Stichworte
Multiple zeta values; Multiple Eisenstein series; Multiple q -zeta; values; Affine schemes; Quasi-shuffle Hopf algebras
Erscheinungsjahr
2025
Zeitschriftentitel
Journal of Number Theory
Band
269
Seite(n)
106-137
ISSN
0022-314X
eISSN
1096-1658
Page URI
https://pub.uni-bielefeld.de/record/2999622

Zitieren

Burmester A. A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values. Journal of Number Theory. 2025;269:106-137.
Burmester, A. (2025). A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values. Journal of Number Theory, 269, 106-137. https://doi.org/10.1016/j.jnt.2024.09.011
Burmester, Annika. 2025. “A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values”. Journal of Number Theory 269: 106-137.
Burmester, A. (2025). A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values. Journal of Number Theory 269, 106-137.
Burmester, A., 2025. A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values. Journal of Number Theory, 269, p 106-137.
A. Burmester, “A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values”, Journal of Number Theory, vol. 269, 2025, pp. 106-137.
Burmester, A.: A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values. Journal of Number Theory. 269, 106-137 (2025).
Burmester, Annika. “A generalization of formal multiple zeta values related to multiple Eisenstein series and multiple q-zeta values”. Journal of Number Theory 269 (2025): 106-137.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar