Wasserstein distance in terms of the comonotonicity copula
Abdellatif M, Kuchling P, Rüdiger B, Ventura I (2024)
Stochastics : An International Journal of Probability and Stochastic Processes .
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abdellatif, Mariem;
Kuchling, PeterUniBi;
Rüdiger, Barbara;
Ventura, Irene
Einrichtung
Abstract / Bemerkung
The aim of this article is to write the p-Wasserstein metric $ W_p $ Wp with the p-norm, $ p\in [1,\infty ) $ p is an element of[1,infinity), on $ \mathbb {R}<^>d $ Rd in terms of copula. In particular for the case of one-dimensional distributions, we get that the copula employed to get the optimal coupling of the Wasserstein distances is the comotonicity copula. We obtain the equivalent result also for d-dimensional distributions under the sufficient and necessary condition that these have the same dependence structure of their one-dimensional marginals, i.e that the d-dimensional distributions share the same copula. Assuming $ p\neq q $ p not equal q, p,q $ \in [1,\infty ) $ is an element of[1,infinity) and that the probability measures mu and nu are sharing the same copula, we also analyze the Wasserstein distance $ W_{p,q} $ Wp,q discussed in [Alfonsi and Jourdain. A remark on the optimal transport between two probability measures sharing the same copula. Statist. Probab. Lett. 84 (2014) 131-134.] and get an upper and lower bounds of $ W_{p,q} $ Wp,q in terms of $ W_p $ Wp, written in terms of comonotonicity copula. We show that as a consequence the lower and upper bound of $ W_{p,q} $ Wp,q can be written in terms of generalized inverse functions.
Stichworte
Copula;
Wasserstein distance;
comonotonicity
Erscheinungsjahr
2024
Zeitschriftentitel
Stochastics : An International Journal of Probability and Stochastic Processes
ISSN
1744-2508
eISSN
1744-2516
Page URI
https://pub.uni-bielefeld.de/record/2999515
Zitieren
Abdellatif M, Kuchling P, Rüdiger B, Ventura I. Wasserstein distance in terms of the comonotonicity copula. Stochastics : An International Journal of Probability and Stochastic Processes . 2024.
Abdellatif, M., Kuchling, P., Rüdiger, B., & Ventura, I. (2024). Wasserstein distance in terms of the comonotonicity copula. Stochastics : An International Journal of Probability and Stochastic Processes . https://doi.org/10.1080/17442508.2024.2427734
Abdellatif, Mariem, Kuchling, Peter, Rüdiger, Barbara, and Ventura, Irene. 2024. “Wasserstein distance in terms of the comonotonicity copula”. Stochastics : An International Journal of Probability and Stochastic Processes .
Abdellatif, M., Kuchling, P., Rüdiger, B., and Ventura, I. (2024). Wasserstein distance in terms of the comonotonicity copula. Stochastics : An International Journal of Probability and Stochastic Processes .
Abdellatif, M., et al., 2024. Wasserstein distance in terms of the comonotonicity copula. Stochastics : An International Journal of Probability and Stochastic Processes .
M. Abdellatif, et al., “Wasserstein distance in terms of the comonotonicity copula”, Stochastics : An International Journal of Probability and Stochastic Processes , 2024.
Abdellatif, M., Kuchling, P., Rüdiger, B., Ventura, I.: Wasserstein distance in terms of the comonotonicity copula. Stochastics : An International Journal of Probability and Stochastic Processes . (2024).
Abdellatif, Mariem, Kuchling, Peter, Rüdiger, Barbara, and Ventura, Irene. “Wasserstein distance in terms of the comonotonicity copula”. Stochastics : An International Journal of Probability and Stochastic Processes (2024).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in