Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations

Bianchini R, Hientzsch LE, Iandoli F (2024)
SIAM Journal on Mathematical Analysis 56(5): 5915-5968.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bianchini, Roberta; Hientzsch, Lars EricUniBi ; Iandoli, Felice
Abstract / Bemerkung
We prove the strong ill-posedness of the two-dimensional Boussinesq system in vorfor scalar equations. We provide examples of initial data with vorticity and density gradient of small LOO(R2) size, for which the horizontal density gradient \partial x\rho has a strong LOO(R2)-norm inflation in infinitesimal time, while the vorticity and the vertical density gradient remain bounded. Furthermore, exploiting the three-dimensional version of Elgindi's decomposition of the Biot--Savart law, we apply our method to the three-dimensional axisymmetric Euler equations with swirl and away from the vertical axis, showing that a large class of initial data with vorticity uniformly bounded and small in LOO(R2) provides a solution whose gradient of the swirl has a strong LOO(R2)-norm inflation in infinitesimal time. The norm inflation is quantified from below by an explicit lower bound which depends on time and the size of the data and is valid for small times.
Stichworte
Boussinesq system; axisymmetric Euler equations; strong ill-posedness; Biot--Savart decomposition; Boussinesq equations; Riesz transform
Erscheinungsjahr
2024
Zeitschriftentitel
SIAM Journal on Mathematical Analysis
Band
56
Ausgabe
5
Seite(n)
5915-5968
ISSN
0036-1410
eISSN
1095-7154
Page URI
https://pub.uni-bielefeld.de/record/2999511

Zitieren

Bianchini R, Hientzsch LE, Iandoli F. Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations. SIAM Journal on Mathematical Analysis . 2024;56(5):5915-5968.
Bianchini, R., Hientzsch, L. E., & Iandoli, F. (2024). Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations. SIAM Journal on Mathematical Analysis , 56(5), 5915-5968. https://doi.org/10.1137/23M159384X
Bianchini, Roberta, Hientzsch, Lars Eric, and Iandoli, Felice. 2024. “Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations”. SIAM Journal on Mathematical Analysis 56 (5): 5915-5968.
Bianchini, R., Hientzsch, L. E., and Iandoli, F. (2024). Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations. SIAM Journal on Mathematical Analysis 56, 5915-5968.
Bianchini, R., Hientzsch, L.E., & Iandoli, F., 2024. Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations. SIAM Journal on Mathematical Analysis , 56(5), p 5915-5968.
R. Bianchini, L.E. Hientzsch, and F. Iandoli, “Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations”, SIAM Journal on Mathematical Analysis , vol. 56, 2024, pp. 5915-5968.
Bianchini, R., Hientzsch, L.E., Iandoli, F.: Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations. SIAM Journal on Mathematical Analysis . 56, 5915-5968 (2024).
Bianchini, Roberta, Hientzsch, Lars Eric, and Iandoli, Felice. “Strong Ill-Posedness in L<SUP>∞</SUP> of the 2D Boussinesq Equations in Vorticity Form and Application to the 3D Axisymmetric Euler Equations”. SIAM Journal on Mathematical Analysis 56.5 (2024): 5915-5968.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar