Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>
Nendel M (2024)
Finance and Stochastics .
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
The main result of this paper characterises the continuity from below of monotone functionals on the space C-b of bounded continuous functions on an arbitrary Polish space as lower semicontinuity in the mixed topology. In this particular situation, the mixed topology coincides with the Mackey topology for the dual pair (C-b, ca), where ca denotes the space of all countably additive signed Borel measures of finite variation. Hence lower semicontinuity in the mixed topology is for convex monotone maps C-b -> R equivalent to a dual representation in terms of countably additive measures. Such representations are of fundamental importance in finance, e.g. in the context of risk measures and superhedging problems. Based on the main result, regularity properties of capacities and dual representations of Choquet integrals in terms of countably additive measures for 2-alternating capacities are studied. Moreover, a well-known characterisation of star-shaped risk measures on L-infinity is transferred to risk measures on C-b. In a second step, the paper provides a characterisation of equicontinuity in the mixed topology for families of convex monotone maps. As a consequence, for every convex monotone map on C-b taking values in a locally convex vector lattice, continuity in the mixed topology is equivalent to continuity on norm-bounded sets.
Stichworte
Risk measure;
Monotone functional;
Choquet integral;
Continuity from;
below;
Lower semicontinuity;
Mixed topology;
Mackey topology;
Star-shaped
Erscheinungsjahr
2024
Zeitschriftentitel
Finance and Stochastics
ISSN
0949-2984
eISSN
1432-1122
Page URI
https://pub.uni-bielefeld.de/record/2999502
Zitieren
Nendel M. Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>. Finance and Stochastics . 2024.
Nendel, M. (2024). Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>. Finance and Stochastics . https://doi.org/10.1007/s00780-024-00552-2
Nendel, Max. 2024. “Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>”. Finance and Stochastics .
Nendel, M. (2024). Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>. Finance and Stochastics .
Nendel, M., 2024. Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>. Finance and Stochastics .
M. Nendel, “Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>”, Finance and Stochastics , 2024.
Nendel, M.: Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>. Finance and Stochastics . (2024).
Nendel, Max. “Lower semicontinuity of monotone functionals in the mixed topology on <i>C<sub>b</sub></i>”. Finance and Stochastics (2024).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in