The value of information in predicting harmful algal blooms
Luhede A, Freund JA, Dajka J-C, Upmann T (2025)
Journal of Environmental Management 373: 123288.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Abstract / Bemerkung
Environmental decision-making is inherently subject to uncertainty. However, decisions are often urgent, and whether to take direct action or invest in collecting additional data beforehand is pervasive. To make this trade-off explicit, the value of information (VoI) theory offers a powerful decision analytic tool to quantify the expected benefit of resolving uncertainty in a decision context. Although it is mainly used in economic contexts, it can be applied to biodiversity conservation and management.
In our approach, we evaluate the expected surplus in resolving uncertainty about the occurrence of harmful algal blooms (HABs) in the German North Sea coastal waters and the effect on decision-making. We use an established dynamic foodweb model (NPPZ) with two competing phytoplankton consortia (harmful, non-harmful) and regional monitoring data to analyse the prediction accuracy of different indicators. Our analysis revealed a prediction accuracy of a HAB occurrence of 0.65 % if additional information on zooplankton is included. We then evaluate the effect of reducing uncertainty about these indicators (e.g., through extended monitoring) on management decisions employing a VoI analysis. We find that additional information may lead to an expected welfare gain of up to 2.67 million Euro in our decision context. Our results highlight the significant potential for VoI analysis to enhance decision-making in fishery and ecosystem management and provide insights for future monitoring strategies to mitigate the adverse effects of HABs. This approach contributes valuable methodological insights for optimising management strategies and further emphasises the importance of considering uncertainty in decision-making processes.
Erscheinungsjahr
2025
Zeitschriftentitel
Journal of Environmental Management
Band
373
Art.-Nr.
123288
Urheberrecht / Lizenzen
ISSN
03014797
Page URI
https://pub.uni-bielefeld.de/record/2994716
Zitieren
Luhede A, Freund JA, Dajka J-C, Upmann T. The value of information in predicting harmful algal blooms. Journal of Environmental Management. 2025;373: 123288.
Luhede, A., Freund, J. A., Dajka, J. - C., & Upmann, T. (2025). The value of information in predicting harmful algal blooms. Journal of Environmental Management, 373, 123288. https://doi.org/10.1016/j.jenvman.2024.123288
Luhede, Amelie, Freund, Jan A., Dajka, Jan-Claas, and Upmann, Thorsten. 2025. “The value of information in predicting harmful algal blooms”. Journal of Environmental Management 373: 123288.
Luhede, A., Freund, J. A., Dajka, J. - C., and Upmann, T. (2025). The value of information in predicting harmful algal blooms. Journal of Environmental Management 373:123288.
Luhede, A., et al., 2025. The value of information in predicting harmful algal blooms. Journal of Environmental Management, 373: 123288.
A. Luhede, et al., “The value of information in predicting harmful algal blooms”, Journal of Environmental Management, vol. 373, 2025, : 123288.
Luhede, A., Freund, J.A., Dajka, J.-C., Upmann, T.: The value of information in predicting harmful algal blooms. Journal of Environmental Management. 373, : 123288 (2025).
Luhede, Amelie, Freund, Jan A., Dajka, Jan-Claas, and Upmann, Thorsten. “The value of information in predicting harmful algal blooms”. Journal of Environmental Management 373 (2025): 123288.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2024-11-29T06:54:38Z
MD5 Prüfsumme
02bfd10af159795b81996554be9ca05a
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 39612785
PubMed | Europe PMC
Suchen in