Interval groups related to finite Coxeter groups I
Baumeister B, Neaime G, Rees S (2023)
Algebraic Combinatorics 6(2).
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baumeister, BarbaraUniBi;
Neaime, GeorgesUniBi;
Rees, Sarah
Einrichtung
Abstract / Bemerkung
We derive presentations of the interval groups related to all quasi-Coxeter elements in the Coxeter group of type Dn. Type Dn is the only infinite family of finite Coxeter groups that admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators in bijection with what we call a Carter generating set, and the relations are those defined by the related Carter diagram together with a twisted cycle or a cycle commutator relator, depending on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the description of two combinatorial techniques related to the intervals of quasi-Coxeter elements. In a subsequent work [4], we complete our analysis to cover all the exceptional cases of finite Coxeter groups, and establish that almost all the interval groups related to proper quasiCoxeter elements are not isomorphic to the related Artin groups, hence establishing a new family of interval groups with nice presentations [4, 5]. Alongside the proof of the main results, we establish important properties related to the dual approach to Coxeter and Artin groups.
Stichworte
Coxeter groups;
Quasi-Coxeter elements;
Carter diagrams;
Artin(-Tits);
groups;
dual approach to Coxeter and Artin groups;
generalised;
non-crossing partitions;
Garside structures;
Interval (Garside);
structures
Erscheinungsjahr
2023
Zeitschriftentitel
Algebraic Combinatorics
Band
6
Ausgabe
2
eISSN
2589-5486
Page URI
https://pub.uni-bielefeld.de/record/2994609
Zitieren
Baumeister B, Neaime G, Rees S. Interval groups related to finite Coxeter groups I. Algebraic Combinatorics . 2023;6(2).
Baumeister, B., Neaime, G., & Rees, S. (2023). Interval groups related to finite Coxeter groups I. Algebraic Combinatorics , 6(2). https://doi.org/10.5802/alco.266
Baumeister, Barbara, Neaime, Georges, and Rees, Sarah. 2023. “Interval groups related to finite Coxeter groups I”. Algebraic Combinatorics 6 (2).
Baumeister, B., Neaime, G., and Rees, S. (2023). Interval groups related to finite Coxeter groups I. Algebraic Combinatorics 6.
Baumeister, B., Neaime, G., & Rees, S., 2023. Interval groups related to finite Coxeter groups I. Algebraic Combinatorics , 6(2).
B. Baumeister, G. Neaime, and S. Rees, “Interval groups related to finite Coxeter groups I”, Algebraic Combinatorics , vol. 6, 2023.
Baumeister, B., Neaime, G., Rees, S.: Interval groups related to finite Coxeter groups I. Algebraic Combinatorics . 6, (2023).
Baumeister, Barbara, Neaime, Georges, and Rees, Sarah. “Interval groups related to finite Coxeter groups I”. Algebraic Combinatorics 6.2 (2023).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in