Sequence labeling via reinforcement learning with aggregate labels

Geromel M, Cimiano P (2024)
Frontiers in Artificial Intelligence 7: 13 Seiten.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 588.28 KB
Abstract / Bemerkung

Sequence labeling is pervasive in natural language processing, encompassing tasks such as Named Entity Recognition, Question Answering, and Information Extraction. Traditionally, these tasks are addressed via supervised machine learning approaches. However, despite their success, these approaches are constrained by two key limitations: a common mismatch between the training and evaluation objective, and the resource-intensive acquisition of ground-truth token-level annotations. In this work, we introduce a novel reinforcement learning approach to sequence labeling that leverages aggregate annotations by counting entity mentions to generate feedback for training, thereby addressing the aforementioned limitations. We conduct experiments using various combinations of aggregate feedback and reward functions for comparison, focusing on Named Entity Recognition to validate our approach. The results suggest that sequence labeling can be learned from purely count-based labels, even at the sequence-level. Overall, this count-based method has the potential to significantly reduce annotation costs and variances, as counting entity mentions is more straightforward than determining exact boundaries.

Stichworte
reinforcement learning; reward functions; annotations; sequence labeling; information extraction
Erscheinungsjahr
2024
Zeitschriftentitel
Frontiers in Artificial Intelligence
Band
7
Seite(n)
13 Seiten
eISSN
2624-8212
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2994415

Zitieren

Geromel M, Cimiano P. Sequence labeling via reinforcement learning with aggregate labels. Frontiers in Artificial Intelligence. 2024;7:13 Seiten.
Geromel, M., & Cimiano, P. (2024). Sequence labeling via reinforcement learning with aggregate labels. Frontiers in Artificial Intelligence, 7, 13 Seiten. https://doi.org/10.3389/frai.2024.1463164
Geromel, Marcel, and Cimiano, Philipp. 2024. “Sequence labeling via reinforcement learning with aggregate labels”. Frontiers in Artificial Intelligence 7: 13 Seiten.
Geromel, M., and Cimiano, P. (2024). Sequence labeling via reinforcement learning with aggregate labels. Frontiers in Artificial Intelligence 7, 13 Seiten.
Geromel, M., & Cimiano, P., 2024. Sequence labeling via reinforcement learning with aggregate labels. Frontiers in Artificial Intelligence, 7, p 13 Seiten.
M. Geromel and P. Cimiano, “Sequence labeling via reinforcement learning with aggregate labels”, Frontiers in Artificial Intelligence, vol. 7, 2024, pp. 13 Seiten.
Geromel, M., Cimiano, P.: Sequence labeling via reinforcement learning with aggregate labels. Frontiers in Artificial Intelligence. 7, 13 Seiten (2024).
Geromel, Marcel, and Cimiano, Philipp. “Sequence labeling via reinforcement learning with aggregate labels”. Frontiers in Artificial Intelligence 7 (2024): 13 Seiten.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-11-18T08:50:13Z
MD5 Prüfsumme
06680e7df722f83ecc424cd5ed69bf89


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar