A comparison Principle Based on Couplings of Partial Integro-Differential Operators

Della Corte S, Fuchs F, Kraaij RC, Nendel M (2024) Center for Mathematical Economics Working Papers; 696.
Bielefeld: Center for Mathematical Economics.

Diskussionspapier | Veröffentlicht | Englisch
 
Download
OA 855.16 KB
Autor*in
Della Corte, Serena; Fuchs, FabianUniBi; Kraaij, Richard C.; Nendel, MaxUniBi
Abstract / Bemerkung
This paper is concerned with a comparison principle for viscosity solu- tions to Hamilton–Jacobi (HJ), –Bellman (HJB), and –Isaacs (HJI) equations for gen- eral classes of partial integro-differential operators. Our approach innovates in three ways: (1) We reinterpret the classical doubling-of-variables method in the context of second-order equations by casting the Ishii–Crandall Lemma into a test function framework. This adaptation allows us to effectively handle non-local integral opera- tors, such as those associated with Lévy processes. (2) We translate the key estimate on the difference of Hamiltonians in terms of an adaptation of the probabilistic no- tion of couplings, providing a unified approach that applies to differential, difference, and integral operators. (3) We strengthen the sup-norm contractivity resulting from the comparison principle to one that encodes continuity in the strict topology. We apply our theory to a variety of examples, in particular, to second-order differential operators and, more generally, generators of spatially inhomogeneous Lévy processes.

MSC 2020 classification: Primary 35J60; 35D40; 45K05; Secondary 49L25; 49Q22
Stichworte
Comparison principle; viscosity solution; Hamilton–Jacobi-Bellman–Isaacs equation; coupling of operators; Lyapunov function; Jensen perturbation; mixed topology
Erscheinungsjahr
2024
Serientitel
Center for Mathematical Economics Working Papers
Band
696
Seite(n)
47
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2994190

Zitieren

Della Corte S, Fuchs F, Kraaij RC, Nendel M. A comparison Principle Based on Couplings of Partial Integro-Differential Operators. Center for Mathematical Economics Working Papers. Vol 696. Bielefeld: Center for Mathematical Economics; 2024.
Della Corte, S., Fuchs, F., Kraaij, R. C., & Nendel, M. (2024). A comparison Principle Based on Couplings of Partial Integro-Differential Operators (Center for Mathematical Economics Working Papers, 696). Bielefeld: Center for Mathematical Economics.
Della Corte, Serena, Fuchs, Fabian, Kraaij, Richard C., and Nendel, Max. 2024. A comparison Principle Based on Couplings of Partial Integro-Differential Operators. Vol. 696. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Della Corte, S., Fuchs, F., Kraaij, R. C., and Nendel, M. (2024). A comparison Principle Based on Couplings of Partial Integro-Differential Operators. Center for Mathematical Economics Working Papers, 696, Bielefeld: Center for Mathematical Economics.
Della Corte, S., et al., 2024. A comparison Principle Based on Couplings of Partial Integro-Differential Operators, Center for Mathematical Economics Working Papers, no.696, Bielefeld: Center for Mathematical Economics.
S. Della Corte, et al., A comparison Principle Based on Couplings of Partial Integro-Differential Operators, Center for Mathematical Economics Working Papers, vol. 696, Bielefeld: Center for Mathematical Economics, 2024.
Della Corte, S., Fuchs, F., Kraaij, R.C., Nendel, M.: A comparison Principle Based on Couplings of Partial Integro-Differential Operators. Center for Mathematical Economics Working Papers, 696. Center for Mathematical Economics, Bielefeld (2024).
Della Corte, Serena, Fuchs, Fabian, Kraaij, Richard C., and Nendel, Max. A comparison Principle Based on Couplings of Partial Integro-Differential Operators. Bielefeld: Center for Mathematical Economics, 2024. Center for Mathematical Economics Working Papers. 696.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-11-11T09:34:31Z
MD5 Prüfsumme
c9dec8846670cd24609b417a7546ddc4


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar