Relative pose estimation from panoramic images using a hybrid neural network architecture

Offermann L (2024)
Scientific Reports 14(1): 25246.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Camera-based relative pose estimation (RPE) localizes a mobile robot given a view at the current position and an image at a reference location. Matching the landmarks between views is critical to localization quality. Common challenges are appearance changes, for example due to differing illumination. Indirect RPE methods extract high-level features that provide invariance against appearance changes but neglect the remaining image data. This can lead to poor pose estimates in scenes with little detail. Direct RPE methods mitigate this issue by operating on the pixel level with only moderate preprocessing, but invariances have to be achieved by different means. We propose to attain illumination invariance for the direct RPE algorithm MinWarping by integrating it with a convolutional neural network for image preprocessing, creating a hybrid architecture. We optimize network parameters using a metric on RPE quality, backpropagating through MinWarping and the network. We focus on planar movement, panoramic images, and indoor scenes with varying illumination conditions; a novel dataset for this setup is recorded and used for analysis. Our method compares favourably against the previous best preprocessing method for MinWarping, edge filtering, and against a modern deep-learning-based indirect RPE pipeline. Analysis of the trained hybrid architecture indicates that neglecting landmarks in a direct RPE framework can improve estimation quality in scenes with occlusion and few details. © 2024. The Author(s).
Erscheinungsjahr
2024
Zeitschriftentitel
Scientific Reports
Band
14
Ausgabe
1
Art.-Nr.
25246
eISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2994025

Zitieren

Offermann L. Relative pose estimation from panoramic images using a hybrid neural network architecture. Scientific Reports . 2024;14(1): 25246.
Offermann, L. (2024). Relative pose estimation from panoramic images using a hybrid neural network architecture. Scientific Reports , 14(1), 25246. https://doi.org/10.1038/s41598-024-75124-7
Offermann, Lars. 2024. “Relative pose estimation from panoramic images using a hybrid neural network architecture”. Scientific Reports 14 (1): 25246.
Offermann, L. (2024). Relative pose estimation from panoramic images using a hybrid neural network architecture. Scientific Reports 14:25246.
Offermann, L., 2024. Relative pose estimation from panoramic images using a hybrid neural network architecture. Scientific Reports , 14(1): 25246.
L. Offermann, “Relative pose estimation from panoramic images using a hybrid neural network architecture”, Scientific Reports , vol. 14, 2024, : 25246.
Offermann, L.: Relative pose estimation from panoramic images using a hybrid neural network architecture. Scientific Reports . 14, : 25246 (2024).
Offermann, Lars. “Relative pose estimation from panoramic images using a hybrid neural network architecture”. Scientific Reports 14.1 (2024): 25246.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 39448675
PubMed | Europe PMC

Suchen in

Google Scholar