Tumor Grading via Decorrelated Sparse Survival Regression
Paaßen B, Gaisa N, Rose M, Bösherz M-S (2024)
In: 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Verleysen M (Ed); .
Konferenzbeitrag | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Paaßen, BenjaminUniBi ;
Gaisa, Nadine;
Rose, Michael;
Bösherz, Mark-Sebastian
Herausgeber*in
Verleysen, Michel
Abstract / Bemerkung
In medical pathology, tumor grading is concerned with estimating the risk posed by a tumor, based on its pathological features. One way to infer risk scores is survival regression, i.e. using machine learning to infer a score that predicts the remaining survival time of a patient. Unfortunately, if applied naively, such a score is a mix of the intrinsic risk posed by the tumor and other risk factors, like the progression of the tumor or patient gender and age. We provide the first survival regression model that disentangles tumor grading from undesired correlations, while retaining a high degree of model interpretability, thanks to convex optimization, non-negativity constraints, sparsity, and linearity. We evaluate the proposed approach both on simulated and real-world data from N = 114 patients at the University Clinic Aachen.
Erscheinungsjahr
2024
Titel des Konferenzbandes
32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN)
Konferenz
32nd European Symposium on Artificial Neural Networks (ESANN)
Konferenzort
Bruges, Belgium
Konferenzdatum
2024-10-09 – 2024-10-11
Page URI
https://pub.uni-bielefeld.de/record/2993305
Zitieren
Paaßen B, Gaisa N, Rose M, Bösherz M-S. Tumor Grading via Decorrelated Sparse Survival Regression. In: Verleysen M, ed. 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). 2024.
Paaßen, B., Gaisa, N., Rose, M., & Bösherz, M. - S. (2024). Tumor Grading via Decorrelated Sparse Survival Regression. In M. Verleysen (Ed.), 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). https://doi.org/10.14428/esann/2024.ES2024-44
Paaßen, Benjamin, Gaisa, Nadine, Rose, Michael, and Bösherz, Mark-Sebastian. 2024. “Tumor Grading via Decorrelated Sparse Survival Regression”. In 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), ed. Michel Verleysen.
Paaßen, B., Gaisa, N., Rose, M., and Bösherz, M. - S. (2024). “Tumor Grading via Decorrelated Sparse Survival Regression” in 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Verleysen, M. ed.
Paaßen, B., et al., 2024. Tumor Grading via Decorrelated Sparse Survival Regression. In M. Verleysen, ed. 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN).
B. Paaßen, et al., “Tumor Grading via Decorrelated Sparse Survival Regression”, 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), M. Verleysen, ed., 2024.
Paaßen, B., Gaisa, N., Rose, M., Bösherz, M.-S.: Tumor Grading via Decorrelated Sparse Survival Regression. In: Verleysen, M. (ed.) 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). (2024).
Paaßen, Benjamin, Gaisa, Nadine, Rose, Michael, and Bösherz, Mark-Sebastian. “Tumor Grading via Decorrelated Sparse Survival Regression”. 32nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). Ed. Michel Verleysen. 2024.