Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study

Zapf A, Frömke C, Hardt J, Rücker G, Voeltz D, Hoyer A (2024)
Biometrical Journal 66(7): e202300101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zapf, Antonia; Frömke, Cornelia; Hardt, Juliane; Rücker, Gerta; Voeltz, DinaUniBi ; Hoyer, AnnikaUniBi
Abstract / Bemerkung
The development of methods for the meta-analysis of diagnostic test accuracy (DTA) studies is still an active area of research. While methods for the standard case where each study reports a single pair of sensitivity and specificity are nearly routinely applied nowadays, methods to meta-analyze receiver operating characteristic (ROC) curves are not widely used. This situation is more complex, as each primary DTA study may report on several pairs of sensitivity and specificity, each corresponding to a different threshold. In a case study published earlier, we applied a number of methods for meta-analyzing DTA studies with multiple thresholds to a real-world data example (Zapf etal., Biometrical Journal. 2021; 63(4): 699-711). To date, no simulation study exists that systematically compares different approaches with respect to their performance in various scenarios when the truth is known. In this article, we aim to fill this gap and present the results of a simulation study that compares three frequentist approaches for the meta-analysis of ROC curves. We performed a systematic simulation study, motivated by an example from medical research. In the simulations, all three approaches worked partially well. The approach by Hoyer and colleagues was slightly superior in most scenarios and is recommended in practice. © 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
Erscheinungsjahr
2024
Zeitschriftentitel
Biometrical Journal
Band
66
Ausgabe
7
Art.-Nr.
e202300101
eISSN
1521-4036
Page URI
https://pub.uni-bielefeld.de/record/2993279

Zitieren

Zapf A, Frömke C, Hardt J, Rücker G, Voeltz D, Hoyer A. Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study. Biometrical Journal. 2024;66(7): e202300101.
Zapf, A., Frömke, C., Hardt, J., Rücker, G., Voeltz, D., & Hoyer, A. (2024). Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study. Biometrical Journal, 66(7), e202300101. https://doi.org/10.1002/bimj.202300101
Zapf, Antonia, Frömke, Cornelia, Hardt, Juliane, Rücker, Gerta, Voeltz, Dina, and Hoyer, Annika. 2024. “Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study”. Biometrical Journal 66 (7): e202300101.
Zapf, A., Frömke, C., Hardt, J., Rücker, G., Voeltz, D., and Hoyer, A. (2024). Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study. Biometrical Journal 66:e202300101.
Zapf, A., et al., 2024. Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study. Biometrical Journal, 66(7): e202300101.
A. Zapf, et al., “Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study”, Biometrical Journal, vol. 66, 2024, : e202300101.
Zapf, A., Frömke, C., Hardt, J., Rücker, G., Voeltz, D., Hoyer, A.: Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study. Biometrical Journal. 66, : e202300101 (2024).
Zapf, Antonia, Frömke, Cornelia, Hardt, Juliane, Rücker, Gerta, Voeltz, Dina, and Hoyer, Annika. “Meta-Analysis of Diagnostic Accuracy Studies With Multiple Thresholds: Comparison of Approaches in a Simulation Study”. Biometrical Journal 66.7 (2024): e202300101.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 39330620
PubMed | Europe PMC

Suchen in

Google Scholar