Nonlocal equations with degenerate weights
Behn L, Diening L, Ok J, Rolfes J (2024)
arXiv:2409.11829.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We introduce fractional weighted Sobolev spaces with degenerate weights. For
these spaces we provide embeddings and Poincar\'e inequalities. When the order
of fractional differentiability goes to $0$ or $1$, we recover the weighted
Lebesgue and Sobolev spaces with Muckenhoupt weights, respectively. Moreover,
we prove interior H\"older continuity and Harnack inequalities for solutions to
the corresponding weighted nonlocal integro-differential equations. This
naturally extends a classical result by Fabes, Kenig, and Serapioni to the
nonlinear, nonlocal setting.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv:2409.11829
Page URI
https://pub.uni-bielefeld.de/record/2992691
Zitieren
Behn L, Diening L, Ok J, Rolfes J. Nonlocal equations with degenerate weights. arXiv:2409.11829. 2024.
Behn, L., Diening, L., Ok, J., & Rolfes, J. (2024). Nonlocal equations with degenerate weights. arXiv:2409.11829
Behn, Linus, Diening, Lars, Ok, Jihoon, and Rolfes, Julian. 2024. “Nonlocal equations with degenerate weights”. arXiv:2409.11829.
Behn, L., Diening, L., Ok, J., and Rolfes, J. (2024). Nonlocal equations with degenerate weights. arXiv:2409.11829.
Behn, L., et al., 2024. Nonlocal equations with degenerate weights. arXiv:2409.11829.
L. Behn, et al., “Nonlocal equations with degenerate weights”, arXiv:2409.11829, 2024.
Behn, L., Diening, L., Ok, J., Rolfes, J.: Nonlocal equations with degenerate weights. arXiv:2409.11829. (2024).
Behn, Linus, Diening, Lars, Ok, Jihoon, and Rolfes, Julian. “Nonlocal equations with degenerate weights”. arXiv:2409.11829 (2024).