Most $q$-matroids are not representable
Degen S, Kühne L (2024)
arXiv:2408.06795.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
A $q$-matroid is the analogue of a matroid which arises by replacing the finite ground set of a matroid with a finite-dimensional vector space over a finite field. These $q$-matroids are motivated by coding theory as the representable $q$-matroids are the ones that stem from rank-metric codes. In this note, we establish a $q$-analogue of Nelson's theorem in matroid theory by proving that asymptotically almost all $q$-matroids are not representable. This answers a question about representable $q$-matroids by Jurrius and Pellikaan strongly in the negative.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv:2408.06795
Page URI
https://pub.uni-bielefeld.de/record/2992422
Zitieren
Degen S, Kühne L. Most $q$-matroids are not representable. arXiv:2408.06795. 2024.
Degen, S., & Kühne, L. (2024). Most $q$-matroids are not representable. arXiv:2408.06795. https://doi.org/10.48550/ARXIV.2408.06795
Degen, Sebastian, and Kühne, Lukas. 2024. “Most $q$-matroids are not representable”. arXiv:2408.06795.
Degen, S., and Kühne, L. (2024). Most $q$-matroids are not representable. arXiv:2408.06795.
Degen, S., & Kühne, L., 2024. Most $q$-matroids are not representable. arXiv:2408.06795.
S. Degen and L. Kühne, “Most $q$-matroids are not representable”, arXiv:2408.06795, 2024.
Degen, S., Kühne, L.: Most $q$-matroids are not representable. arXiv:2408.06795. (2024).
Degen, Sebastian, and Kühne, Lukas. “Most $q$-matroids are not representable”. arXiv:2408.06795 (2024).