AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study
Mueller L, Maehringer-Kunz A, Auer TA, Fehrenbach U, Gebauer B, Haubold J, Schaarschmidt BM, Kim M-S, Hosch R, Nensa F, Kleesiek J, et al. (2024)
JHEP Reports 6(8): 101125.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mueller, Lukas;
Maehringer-Kunz, Aline;
Auer, Timo Alexander;
Fehrenbach, Uli;
Gebauer, Bernhard;
Haubold, Johannes;
Schaarschmidt, Benedikt Michael;
Kim, Moon-Sung;
Hosch, Rene;
Nensa, Felix;
Kleesiek, Jens;
Diallo, Thierno D.
Alle
Alle
Einrichtung
Abstract / Bemerkung
Background & Aims: Body composition assessment (BCA) parameters have recently been identified as relevant prognostic factors for patients with hepatocellular carcinoma (HCC). Herein, we aimed to investigate the role of BCA parameters for prognosis prediction in patients with HCC undergoing transarterial chemoembolization (TACE). Methods: This retrospective multicenter study included a total of 754 treatment-na & iuml;ve patients with HCC who underwent TACE at six tertiary care centers between 2010-2020. Fully automated artificial intelligence-based quantitative 3D volumetry of abdominal cavity tissue composition was performed to assess skeletal muscle volume (SM), total adipose tissue (TAT), intra- and intermuscular adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue (SAT) on pre-intervention computed tomography scans. BCA parameters were normalized to the slice number of the abdominal cavity. We assessed the influence of BCA parameters on median overall survival and performed multivariate analysis including established estimates of survival. Results: Univariate survival analysis revealed that impaired median overall survival was predicted by low SM (p p <0.001), high TAT volume (p p = 0.013), and high SAT volume (p p = 0.006). In multivariate survival analysis, SM remained an independent prognostic factor (p p = 0.039), while TAT and SAT volumes no longer showed predictive ability. This predictive role of SM was confirmed in a subgroup analysis of patients with BCLC stage B. Conclusions: SM is an independent prognostic factor for survival prediction. Thus, the integration of SM into novel scoring systems could potentially improve survival prediction and clinical decision-making. Fully automated approaches are needed to foster the implementation of this imaging biomarker into daily routine.
Stichworte
Hepatocellular Carcinoma;
Artificial Intelligence;
Transarterial;
Chemoembolization;
Body Composition
Erscheinungsjahr
2024
Zeitschriftentitel
JHEP Reports
Band
6
Ausgabe
8
Art.-Nr.
101125
eISSN
2589-5559
Page URI
https://pub.uni-bielefeld.de/record/2991993
Zitieren
Mueller L, Maehringer-Kunz A, Auer TA, et al. AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study. JHEP Reports. 2024;6(8): 101125.
Mueller, L., Maehringer-Kunz, A., Auer, T. A., Fehrenbach, U., Gebauer, B., Haubold, J., Schaarschmidt, B. M., et al. (2024). AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study. JHEP Reports, 6(8), 101125. https://doi.org/10.1016/j.jhepr.2024.101125
Mueller, Lukas, Maehringer-Kunz, Aline, Auer, Timo Alexander, Fehrenbach, Uli, Gebauer, Bernhard, Haubold, Johannes, Schaarschmidt, Benedikt Michael, et al. 2024. “AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study”. JHEP Reports 6 (8): 101125.
Mueller, L., Maehringer-Kunz, A., Auer, T. A., Fehrenbach, U., Gebauer, B., Haubold, J., Schaarschmidt, B. M., Kim, M. - S., Hosch, R., Nensa, F., et al. (2024). AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study. JHEP Reports 6:101125.
Mueller, L., et al., 2024. AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study. JHEP Reports, 6(8): 101125.
L. Mueller, et al., “AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study”, JHEP Reports, vol. 6, 2024, : 101125.
Mueller, L., Maehringer-Kunz, A., Auer, T.A., Fehrenbach, U., Gebauer, B., Haubold, J., Schaarschmidt, B.M., Kim, M.-S., Hosch, R., Nensa, F., Kleesiek, J., Diallo, T.D., Eisenblätter, M., Kuzior, H., Roehlen, N., Bettinger, D., Steinle, V., Mayer, P., Zopfs, D., Pinto, D., Dos Santos, D.P., Kloeckner, R.: AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study. JHEP Reports. 6, : 101125 (2024).
Mueller, Lukas, Maehringer-Kunz, Aline, Auer, Timo Alexander, Fehrenbach, Uli, Gebauer, Bernhard, Haubold, Johannes, Schaarschmidt, Benedikt Michael, Kim, Moon-Sung, Hosch, Rene, Nensa, Felix, Kleesiek, Jens, Diallo, Thierno D., Eisenblätter, Michel, Kuzior, Hanna, Roehlen, Natascha, Bettinger, Dominik, Steinle, Verena, Mayer, Philipp, Zopfs, David, Pinto, Daniel, Dos Santos, Daniel Pinto, and Kloeckner, Roman. “AI-derived body composition parameters as prognostic factors in patients with HCC undergoing TACE in a multicenter study”. JHEP Reports 6.8 (2024): 101125.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 39139458
PubMed | Europe PMC
Suchen in