Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation
Honari S, Constantin V, Rhodin H, Salzmann M, Fua P (2023)
IEEE Transactions on Pattern Analysis and Machine Intelligence 45(5): 6415-6427.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Honari, Sina;
Constantin, Victor;
Rhodin, HelgeUniBi ;
Salzmann, Mathieu;
Fua, Pascal
Abstract / Bemerkung
In this article we propose an unsupervised feature extraction method to capture temporal information on monocular videos, where we detect and encode subject of interest in each frame and leverage contrastive self-supervised (CSS) learning to extract rich latent vectors. Instead of simply treating the latent features of nearby frames as positive pairs and those of temporally-distant ones as negative pairs as in other CSS approaches, we explicitly disentangle each latent vector into a time-variant component and a time-invariant one. We then show that applying contrastive loss only to the time-variant features and encouraging a gradual transition on them between nearby and away frames while also reconstructing the input, extract rich temporal features, well-suited for human pose estimation. Our approach reduces error by about 50% compared to the standard CSS strategies, outperforms other unsupervised single-view methods and matches the performance of multi-view techniques. When 2D pose is available, our approach can extract even richer latent features and improve the 3D pose estimation accuracy, outperforming other state-of-the-art weakly supervised methods.
Stichworte
IEEE Transactions on Pattern Analysis and Machine Intelligence
Erscheinungsjahr
2023
Zeitschriftentitel
IEEE Transactions on Pattern Analysis and Machine Intelligence
Band
45
Ausgabe
5
Seite(n)
6415-6427
ISSN
0162-8828
eISSN
2160-9292, 1939-3539
Page URI
https://pub.uni-bielefeld.de/record/2991918
Zitieren
Honari S, Constantin V, Rhodin H, Salzmann M, Fua P. Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023;45(5):6415-6427.
Honari, S., Constantin, V., Rhodin, H., Salzmann, M., & Fua, P. (2023). Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 6415-6427. https://doi.org/10.1109/TPAMI.2022.3215307
Honari, Sina, Constantin, Victor, Rhodin, Helge, Salzmann, Mathieu, and Fua, Pascal. 2023. “Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation”. IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (5): 6415-6427.
Honari, S., Constantin, V., Rhodin, H., Salzmann, M., and Fua, P. (2023). Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 6415-6427.
Honari, S., et al., 2023. Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), p 6415-6427.
S. Honari, et al., “Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, 2023, pp. 6415-6427.
Honari, S., Constantin, V., Rhodin, H., Salzmann, M., Fua, P.: Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 45, 6415-6427 (2023).
Honari, Sina, Constantin, Victor, Rhodin, Helge, Salzmann, Mathieu, and Fua, Pascal. “Temporal Representation Learning on Monocular Videos for 3D Human Pose Estimation”. IEEE Transactions on Pattern Analysis and Machine Intelligence 45.5 (2023): 6415-6427.