Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes

Zanellato GL, Pagnossin GA, Failla M, Masello JF (2024)
Ecology and Evolution 14(8): e70172.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 6.23 MB
Autor*in
Zanellato, Gabriel L.; Pagnossin, Gabriel A.; Failla, Mauricio; Masello, Juan F.UniBi
Abstract / Bemerkung
**Abstract**

Counting animal populations is fundamental to understand ecological processes. Counts make it possible to estimate the size of an animal population at specific points in time, which is essential information for understanding demographic change. However, in the case of large populations, counts are time‐consuming, particularly if carried out manually. Here, we took advantage of convolutional neural networks (CNN) to count the total number of nest‐entrances in 222 photographs covering the largest known Psittaciformes (Aves) colony in the world. We conducted our study at the largest Burrowing Parrot Cyanoliseus patagonus colony, located on a cliff facing the Atlantic Ocean in the vicinity of El Cóndor village, in north‐eastern Patagonia, Argentina. We also aimed to investigate the distribution of nest‐entrances along the cliff with the colony. For this, we used three CNN architectures, U‐Net, ResUnet, and DeepLabv3. The U‐Net architecture showed the best performance, counting a mean of 59,842 Burrowing Parrot nest‐entrances across the colony, with a mean absolute error of 2.7 nest‐entrances over the testing patches, measured as the difference between actual and predicted counts per patch. Compared to a previous study conducted at El Cóndor colony more than 20 years ago, the CNN architectures also detected noteworthy differences in the distribution of the nest‐entrances along the cliff. We show that the strong changes observed in the distribution of nest‐entrances are a measurable effect of a long record of human‐induced disturbance to the Burrowing Parrot colony at El Cóndor. Given the paramount importance of the Burrowing Parrot colony at El Cóndor, which concentrates 71% of the world's population of this species, we advocate that it is imperative to reduce such a degree of disturbance before the parrots reach the limit of their capacity of adaptation.

Stichworte
artificial intelligence; burrow nesting; colony; computer vision; convolutional neural networks; machine learning; object counting
Erscheinungsjahr
2024
Zeitschriftentitel
Ecology and Evolution
Band
14
Ausgabe
8
Art.-Nr.
e70172
ISSN
2045-7758
eISSN
2045-7758
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2991895

Zitieren

Zanellato GL, Pagnossin GA, Failla M, Masello JF. Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes. Ecology and Evolution. 2024;14(8): e70172.
Zanellato, G. L., Pagnossin, G. A., Failla, M., & Masello, J. F. (2024). Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes. Ecology and Evolution, 14(8), e70172. https://doi.org/10.1002/ece3.70172
Zanellato, Gabriel L., Pagnossin, Gabriel A., Failla, Mauricio, and Masello, Juan F. 2024. “Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes”. Ecology and Evolution 14 (8): e70172.
Zanellato, G. L., Pagnossin, G. A., Failla, M., and Masello, J. F. (2024). Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes. Ecology and Evolution 14:e70172.
Zanellato, G.L., et al., 2024. Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes. Ecology and Evolution, 14(8): e70172.
G.L. Zanellato, et al., “Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes”, Ecology and Evolution, vol. 14, 2024, : e70172.
Zanellato, G.L., Pagnossin, G.A., Failla, M., Masello, J.F.: Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes. Ecology and Evolution. 14, : e70172 (2024).
Zanellato, Gabriel L., Pagnossin, Gabriel A., Failla, Mauricio, and Masello, Juan F. “Using convolutional neural networks to count parrot nest‐entrances on photographs from the largest known colony of Psittaciformes”. Ecology and Evolution 14.8 (2024): e70172.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-08-13T12:05:56Z
MD5 Prüfsumme
e2e6d3d5528a0da13e2b586264a8b543


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 39139915
PubMed | Europe PMC

Suchen in

Google Scholar