Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks

Madan S, Kühnel L, Frohlich H, Hofmann-Apitius M, Fluck J (2024)
Database : the journal of biological databases and curation 2024.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Madan, Sumit; Kühnel, LisaUniBi ; Frohlich, Holger; Hofmann-Apitius, Martin; Fluck, Juliane
Abstract / Bemerkung
MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046. © The Author(s) 2024. Published by Oxford University Press.
Erscheinungsjahr
2024
Zeitschriftentitel
Database : the journal of biological databases and curation
Band
2024
ISSN
1758-0463
Page URI
https://pub.uni-bielefeld.de/record/2991878

Zitieren

Madan S, Kühnel L, Frohlich H, Hofmann-Apitius M, Fluck J. Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database : the journal of biological databases and curation. 2024;2024.
Madan, S., Kühnel, L., Frohlich, H., Hofmann-Apitius, M., & Fluck, J. (2024). Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database : the journal of biological databases and curation, 2024. https://doi.org/10.1093/database/baae066
Madan, Sumit, Kühnel, Lisa, Frohlich, Holger, Hofmann-Apitius, Martin, and Fluck, Juliane. 2024. “Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks”. Database : the journal of biological databases and curation 2024.
Madan, S., Kühnel, L., Frohlich, H., Hofmann-Apitius, M., and Fluck, J. (2024). Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database : the journal of biological databases and curation 2024.
Madan, S., et al., 2024. Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database : the journal of biological databases and curation, 2024.
S. Madan, et al., “Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks”, Database : the journal of biological databases and curation, vol. 2024, 2024.
Madan, S., Kühnel, L., Frohlich, H., Hofmann-Apitius, M., Fluck, J.: Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks. Database : the journal of biological databases and curation. 2024, (2024).
Madan, Sumit, Kühnel, Lisa, Frohlich, Holger, Hofmann-Apitius, Martin, and Fluck, Juliane. “Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks”. Database : the journal of biological databases and curation 2024 (2024).

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 39104284
PubMed | Europe PMC

Suchen in

Google Scholar