Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments

Österdiekhoff A, Heinrich NW, Rußwinkel N, Kopp S (2024)
In: Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Arai K (Ed); Lecture Notes in Networks and Systems. Cham: Springer Nature Switzerland: 626-642.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Österdiekhoff, AnnikaUniBi ; Heinrich, Nils Wendel; Rußwinkel, Nele; Kopp, StefanUniBi
Herausgeber*in
Arai, Kohei
Abstract / Bemerkung
Autonomous intelligent systems are often trained using reinforcement learning (RL), which however is difficult and inefficient in dynamic uncertain environments. Different approaches to overcome these challenges exist, including model-based RL or hierarchical control structures in factored action spaces. However, there is a lack of detailed analyses of the benefits and weaknesses of model-based RL and its combination with hierarchical control when learning action policies for such control problems. In this paper, we report the results of such an analysis. Comparing model-free and model-based RL, we show that the outputs of an internal model must be accurate with at least 50% to yield a performance gain in comparison to a model-free approach. Moreover, we explore a hierarchical control architecture that employs (model-based) control policies specialized for different environmental conditions, managed by a trained meta-agent. Our analyses of training performance indicate important directions for learning action policies in intelligent systems in dynamic uncertain environments and even for complex tasks such as in multi-tasking scenarios.
Stichworte
model-based reinforcement learning; hierarchical control
Erscheinungsjahr
2024
Buchtitel
Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2
Serientitel
Lecture Notes in Networks and Systems
Seite(n)
626-642
Konferenz
Intelligent Systems Conference (IntelliSys)
Konferenzort
Amsterdam
Konferenzdatum
2024-09-05 – 2024-09-06
ISBN
978-3-031-66427-4
eISBN
978-3-031-66428-1
ISSN
2367-3370
eISSN
2367-3389
Page URI
https://pub.uni-bielefeld.de/record/2991603

Zitieren

Österdiekhoff A, Heinrich NW, Rußwinkel N, Kopp S. Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments. In: Arai K, ed. Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Lecture Notes in Networks and Systems. Cham: Springer Nature Switzerland; 2024: 626-642.
Österdiekhoff, A., Heinrich, N. W., Rußwinkel, N., & Kopp, S. (2024). Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments. In K. Arai (Ed.), Lecture Notes in Networks and Systems. Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 626-642). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-66428-1_39
Österdiekhoff, Annika, Heinrich, Nils Wendel, Rußwinkel, Nele, and Kopp, Stefan. 2024. “Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments”. In Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2, ed. Kohei Arai, 626-642. Lecture Notes in Networks and Systems. Cham: Springer Nature Switzerland.
Österdiekhoff, A., Heinrich, N. W., Rußwinkel, N., and Kopp, S. (2024). “Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments” in Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2, Arai, K. ed. Lecture Notes in Networks and Systems (Cham: Springer Nature Switzerland), 626-642.
Österdiekhoff, A., et al., 2024. Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments. In K. Arai, ed. Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Lecture Notes in Networks and Systems. Cham: Springer Nature Switzerland, pp. 626-642.
A. Österdiekhoff, et al., “Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments”, Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2, K. Arai, ed., Lecture Notes in Networks and Systems, Cham: Springer Nature Switzerland, 2024, pp.626-642.
Österdiekhoff, A., Heinrich, N.W., Rußwinkel, N., Kopp, S.: Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments. In: Arai, K. (ed.) Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Lecture Notes in Networks and Systems. p. 626-642. Springer Nature Switzerland, Cham (2024).
Österdiekhoff, Annika, Heinrich, Nils Wendel, Rußwinkel, Nele, and Kopp, Stefan. “Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments”. Intelligent Systems and Applications. Proceedings of the 2024 Intelligent Systems Conference (IntelliSys) Volume 2. Ed. Kohei Arai. Cham: Springer Nature Switzerland, 2024. Lecture Notes in Networks and Systems. 626-642.
Externes Material:
Publikation, die diesen PUB Eintrag enthält
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche