Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair
Kirchner J, Gercek M, Gesch J, Omran H, Friedrichs K, Rudolph F, Ivannikova M, Rossnagel T, Piran M, Pfister R, Blanke P, et al. (2024)
International Journal of Cardiology 411: 132233.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kirchner, Johannes;
Gercek, Muhammed;
Gesch, Johannes;
Omran, Hazem;
Friedrichs, Kai;
Rudolph, Felix;
Ivannikova, Maria;
Rossnagel, Tobias;
Piran, Misagh;
Pfister, Roman;
Blanke, Philipp;
Rudolph, VolkerUniBi
Alle
Alle
Einrichtung
Abstract / Bemerkung
Background: Baseline right ventricular (RV) function derived from 3-dimensional analyses has been demonstrated to be predictive in patients undergoing transcatheter tricuspid valve repair (TTVR). The complex nature of these cumbersome analyses makes patient selection based on established imaging methods challenging. Artificial intelligence (AI)-driven computed tomography (CT) segmentation of the RV might serve as a fast and predictive tool for evaluating patients prior to TTVR. Methods: Patients suffering from severe tricuspid regurgitation underwent full cycle cardiac CT. AI-driven analyses were compared to conventional CT analyses. Outcome measures were correlated with survival free of rehospitalization for heart-failure or death after TTVR as the primary endpoint. Results: Automated AI-based image CT-analysis from 100 patients (mean age 77 +/- 8 years, 63% female) showed excellent correlation for chamber quantification compared to conventional, core-lab evaluated CT analysis (R 0.963 -0.966; p < 0.001). At 1 year (mean follow-up 229 +/- 134 days) the primary endpoint occurred significantly more frequently in patients with reduced RV ejection fraction (EF) <50% (36.6% vs. 13.7%; HR 2.864, CI 1.212 -6.763; p = 0.016). Furthermore, patients with dysfunctional RVs defined as end-diastolic RV volume > 210 ml and RV EF <50% demonstrated worse outcome than patients with functional RVs (43.7% vs. 12.2%; HR 3.753, CI 1.621 -8.693; p = 0.002). Conclusions: Derived RVEF and dysfunctional RV were predictors for death and hospitalization after TTVR. AIfacilitated CT analysis serves as an inter- and intra-observer independent and time-effective tool which may thus aid in optimizing patient selection prior to TTVR in clinical routine and in trials.
Stichworte
Artificial intelligence;
Tricuspid regurgitation;
CT;
Right ventricle;
Valve repair;
EF
Erscheinungsjahr
2024
Zeitschriftentitel
International Journal of Cardiology
Band
411
Art.-Nr.
132233
ISSN
0167-5273
eISSN
1874-1754
Page URI
https://pub.uni-bielefeld.de/record/2991457
Zitieren
Kirchner J, Gercek M, Gesch J, et al. Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology. 2024;411: 132233.
Kirchner, J., Gercek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., et al. (2024). Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology, 411, 132233. https://doi.org/10.1016/j.ijcard.2024.132233
Kirchner, Johannes, Gercek, Muhammed, Gesch, Johannes, Omran, Hazem, Friedrichs, Kai, Rudolph, Felix, Ivannikova, Maria, et al. 2024. “Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair”. International Journal of Cardiology 411: 132233.
Kirchner, J., Gercek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., Rossnagel, T., Piran, M., Pfister, R., et al. (2024). Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology 411:132233.
Kirchner, J., et al., 2024. Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology, 411: 132233.
J. Kirchner, et al., “Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair”, International Journal of Cardiology, vol. 411, 2024, : 132233.
Kirchner, J., Gercek, M., Gesch, J., Omran, H., Friedrichs, K., Rudolph, F., Ivannikova, M., Rossnagel, T., Piran, M., Pfister, R., Blanke, P., Rudolph, V., Rudolph, T.K.: Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair. International Journal of Cardiology. 411, : 132233 (2024).
Kirchner, Johannes, Gercek, Muhammed, Gesch, Johannes, Omran, Hazem, Friedrichs, Kai, Rudolph, Felix, Ivannikova, Maria, Rossnagel, Tobias, Piran, Misagh, Pfister, Roman, Blanke, Philipp, Rudolph, Volker, and Rudolph, Tanja K. “Artificial intelligence-analyzed computed tomography in patients undergoing transcatheter tricuspid valve repair”. International Journal of Cardiology 411 (2024): 132233.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38848770
PubMed | Europe PMC
Suchen in