The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$
Herr S, Schippa R, Tzvetkov N (2024) .
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Herr, SebastianUniBi ;
Schippa, Robert;
Tzvetkov, Nikolay
Einrichtung
Abstract / Bemerkung
We extend Bourgain's $L^2$-wellposedness result for the KP-II equation on
$\mathbb{T}^2$ to initial data with negative Sobolev regularity. The key
ingredient is a new linear $L^4$-Strichartz estimate which is effective on
frequency-dependent time scales. The $L^4$-Strichartz estimates follow from
combining an $\ell^2$-decoupling inequality recently proved by
Guth--Maldague--Oh with semiclassical Strichartz estimates. Moreover, we rely
on a variant of Bourgain's bilinear Strichartz estimate on frequency-dependent
times, which is proved via the C\'ordoba--Fefferman square function estimate.
Erscheinungsjahr
2024
Page URI
https://pub.uni-bielefeld.de/record/2991385
Zitieren
Herr S, Schippa R, Tzvetkov N. The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$. 2024.
Herr, S., Schippa, R., & Tzvetkov, N. (2024). The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$
Herr, Sebastian, Schippa, Robert, and Tzvetkov, Nikolay. 2024. “The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$”.
Herr, S., Schippa, R., and Tzvetkov, N. (2024). The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$.
Herr, S., Schippa, R., & Tzvetkov, N., 2024. The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$.
S. Herr, R. Schippa, and N. Tzvetkov, “The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$”, 2024.
Herr, S., Schippa, R., Tzvetkov, N.: The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$. (2024).
Herr, Sebastian, Schippa, Robert, and Tzvetkov, Nikolay. “The Cauchy problem for the periodic Kadomtsev--Petviashvili--II equation below $L^2$”. (2024).