Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S.

Brinks R, Kaufmann S, Hoyer A, Gregg EW, Saal J (2019)
BMC Medical Research Methodology 19(1): 213.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Brinks, Ralph; Kaufmann, Sophie; Hoyer, AnnikaUniBi ; Gregg, Edward W; Saal, Jürgen
Abstract / Bemerkung
**Abstract**

**Background**
We recently introduced a system of partial differential equations (PDEs) to model the prevalence of chronic diseases with a possibly prolonged state of asymptomatic, undiagnosed disease preceding a diagnosis. Common examples for such diseases include coronary heart disease, type 2 diabetes or cancer. Widespread application of the new method depends upon mathematical treatment of the system of PDEs.

**Methods**
In this article, we study the existence and the uniqueness of the solution of the system of PDEs. To demonstrate the usefulness and importance of the system, we model the age-specific prevalence of hypertension in the US 1999–2010.

**Results**
The examinations of mathematical properties provide a way to solve the systems of PDEs by the method of characteristics. In the application to hypertension, we obtain a good agreement between modeled and surveyed age-specific prevalences.

**Conclusions**
The described system of PDEs provides a practical way to examine the epidemiology of chronic diseases with a state of undiagnosed disease preceding a diagnosis.

Erscheinungsjahr
2019
Zeitschriftentitel
BMC Medical Research Methodology
Band
19
Ausgabe
1
Art.-Nr.
213
eISSN
1471-2288
Page URI
https://pub.uni-bielefeld.de/record/2991251

Zitieren

Brinks R, Kaufmann S, Hoyer A, Gregg EW, Saal J. Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S. BMC Medical Research Methodology. 2019;19(1): 213.
Brinks, R., Kaufmann, S., Hoyer, A., Gregg, E. W., & Saal, J. (2019). Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S. BMC Medical Research Methodology, 19(1), 213. https://doi.org/10.1186/s12874-019-0845-2
Brinks, Ralph, Kaufmann, Sophie, Hoyer, Annika, Gregg, Edward W, and Saal, Jürgen. 2019. “Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S.”. BMC Medical Research Methodology 19 (1): 213.
Brinks, R., Kaufmann, S., Hoyer, A., Gregg, E. W., and Saal, J. (2019). Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S. BMC Medical Research Methodology 19:213.
Brinks, R., et al., 2019. Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S. BMC Medical Research Methodology, 19(1): 213.
R. Brinks, et al., “Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S.”, BMC Medical Research Methodology, vol. 19, 2019, : 213.
Brinks, R., Kaufmann, S., Hoyer, A., Gregg, E.W., Saal, J.: Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S. BMC Medical Research Methodology. 19, : 213 (2019).
Brinks, Ralph, Kaufmann, Sophie, Hoyer, Annika, Gregg, Edward W, and Saal, Jürgen. “Analysing detection of chronic diseases with prolonged sub-clinical periods: modelling and application to hypertension in the U.S.”. BMC Medical Research Methodology 19.1 (2019): 213.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar