Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results

Kühnel L, Schneider J, Perrar I, Adams T, Moazemi S, Prasser F, Nöthlings U, Fröhlich H, Fluck J (2024)
Scientific Reports 14(1): 14412.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kühnel, LisaUniBi ; Schneider, Julian; Perrar, Ines; Adams, Tim; Moazemi, Sobhan; Prasser, Fabian; Nöthlings, Ute; Fröhlich, Holger; Fluck, Juliane
Abstract / Bemerkung
Access to individual-level health data is essential for gaining new insights and advancing science. In particular, modern methods based on artificial intelligence rely on the availability of and access to large datasets. In the health sector, access to individual-level data is often challenging due to privacy concerns. A promising alternative is the generation of fully synthetic data, i.e., data generated through a randomised process that have similar statistical properties as the original data, but do not have a one-to-one correspondence with the original individual-level records. In this study, we use a state-of-the-art synthetic data generation method and perform in-depth quality analyses of the generated data for a specific use case in the field of nutrition. We demonstrate the need for careful analyses of synthetic data that go beyond descriptive statistics and provide valuable insights into how to realise the full potential of synthetic datasets. By extending the methods, but also by thoroughly analysing the effects of sampling from a trained model, we are able to largely reproduce significant real-world analysis results in the chosen use case. © 2024. The Author(s).
Erscheinungsjahr
2024
Zeitschriftentitel
Scientific Reports
Band
14
Ausgabe
1
Art.-Nr.
14412
eISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2990942

Zitieren

Kühnel L, Schneider J, Perrar I, et al. Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results. Scientific Reports . 2024;14(1): 14412.
Kühnel, L., Schneider, J., Perrar, I., Adams, T., Moazemi, S., Prasser, F., Nöthlings, U., et al. (2024). Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results. Scientific Reports , 14(1), 14412. https://doi.org/10.1038/s41598-024-62102-2
Kühnel, Lisa, Schneider, Julian, Perrar, Ines, Adams, Tim, Moazemi, Sobhan, Prasser, Fabian, Nöthlings, Ute, Fröhlich, Holger, and Fluck, Juliane. 2024. “Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results”. Scientific Reports 14 (1): 14412.
Kühnel, L., Schneider, J., Perrar, I., Adams, T., Moazemi, S., Prasser, F., Nöthlings, U., Fröhlich, H., and Fluck, J. (2024). Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results. Scientific Reports 14:14412.
Kühnel, L., et al., 2024. Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results. Scientific Reports , 14(1): 14412.
L. Kühnel, et al., “Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results”, Scientific Reports , vol. 14, 2024, : 14412.
Kühnel, L., Schneider, J., Perrar, I., Adams, T., Moazemi, S., Prasser, F., Nöthlings, U., Fröhlich, H., Fluck, J.: Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results. Scientific Reports . 14, : 14412 (2024).
Kühnel, Lisa, Schneider, Julian, Perrar, Ines, Adams, Tim, Moazemi, Sobhan, Prasser, Fabian, Nöthlings, Ute, Fröhlich, Holger, and Fluck, Juliane. “Synthetic data generation for a longitudinal cohort study - evaluation, method extension and reproduction of published data analysis results”. Scientific Reports 14.1 (2024): 14412.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 38909025
PubMed | Europe PMC

Suchen in

Google Scholar