Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study
Pustozerov E, Kulau U, Albrecht U-V (2024)
Bioengineering 11(6): 596.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
bioengineering-11-00596-v2.pdf
5.02 MB
Autor*in
Pustozerov, EvgeniiUniBi;
Kulau, Ulf;
Albrecht, Urs-VitoUniBi
Abstract / Bemerkung
In recent decades, much work has been implemented in heart rate (HR) analysis using electrocardiographic (ECG) signals. We propose that algorithms developed to calculate HR based on detected R-peaks using ECG can be applied to seismocardiographic (SCG) signals, as they utilize common knowledge regarding heart rhythm and its underlying physiology. We implemented the experimental framework with methods developed for ECG signal processing and peak detection to be applied and evaluated on SCGs. Furthermore, we assessed and chose the best from all combinations of 15 peak detection and 6 preprocessing methods from the literature on the CEBS dataset available on Physionet. We then collected experimental data in the lab experiment to measure the applicability of the best-selected technique to the real-world data; the abovementioned method showed high precision for signals recorded during sitting rest (HR difference between SCG and ECG: 0.12 ± 0.35 bpm) and a moderate precision for signals recorded with interfering physical activity—reading out a book loud (HR difference between SCG and ECG: 6.45 ± 3.01 bpm) when compared to the results derived from the state-of-the-art photoplethysmographic (PPG) methods described in the literature. The study shows that computationally simple preprocessing and peak detection techniques initially developed for ECG could be utilized as the basis for HR detection on SCG, although they can be further improved.
Stichworte
seismocardiography;
heart rhythm;
accelerometers;
electrocardiogram
Erscheinungsjahr
2024
Zeitschriftentitel
Bioengineering
Band
11
Ausgabe
6
Art.-Nr.
596
Urheberrecht / Lizenzen
eISSN
2306-5354
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2990551
Zitieren
Pustozerov E, Kulau U, Albrecht U-V. Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study. Bioengineering. 2024;11(6): 596.
Pustozerov, E., Kulau, U., & Albrecht, U. - V. (2024). Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study. Bioengineering, 11(6), 596. https://doi.org/10.3390/bioengineering11060596
Pustozerov, Evgenii, Kulau, Ulf, and Albrecht, Urs-Vito. 2024. “Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study”. Bioengineering 11 (6): 596.
Pustozerov, E., Kulau, U., and Albrecht, U. - V. (2024). Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study. Bioengineering 11:596.
Pustozerov, E., Kulau, U., & Albrecht, U.-V., 2024. Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study. Bioengineering, 11(6): 596.
E. Pustozerov, U. Kulau, and U.-V. Albrecht, “Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study”, Bioengineering, vol. 11, 2024, : 596.
Pustozerov, E., Kulau, U., Albrecht, U.-V.: Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study. Bioengineering. 11, : 596 (2024).
Pustozerov, Evgenii, Kulau, Ulf, and Albrecht, Urs-Vito. “Automated Heart Rate Detection in Seismocardiograms Using Electrocardiogram-Based Algorithms—A Feasibility Study”. Bioengineering 11.6 (2024): 596.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
bioengineering-11-00596-v2.pdf
5.02 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-06-27T07:10:18Z
MD5 Prüfsumme
985d4cfebb71f8fdf97baded36969d2d
Link(s) zu Volltext(en)
Access Level
Open Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38927832
PubMed | Europe PMC
Suchen in