Nonlinear Dirichlet Forms Associated with Quasiregular Mappings

Beznea C, Beznea L, Röckner M (2024)
Potential Analysis.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Beznea, Camelia; Beznea, Lucian; Röckner, MichaelUniBi
Abstract / Bemerkung
If (E,D) is a symmetric, regular, strongly local Dirichlet form on L2(X,m), admitting a carr & eacute; du champ operator Gamma, and p>1 is a real number, then one can define a nonlinear form Ep by the formula E-p(u,v)=integral(X)Gamma(u)(p-2)/(2)Gamma(u,v)dm, where u, v belong to an appropriate subspace of the domain D. We show that E-p is a nonlinear Dirichlet form in the sense introduced by P. van Beusekom. We then construct the associated Choquet capacity. As a particular case we obtain the nonlinear form associated with the p-Laplace operator on W-0(1,p). Using the above procedure, for each n-dimensional quasiregular mapping f we construct a nonlinear Dirichlet form E-n (p=n) such that the components of f become harmonic functions with respect to E-n. Finally, we obtain Caccioppoli type inequalities in the intrinsic metric induced by E, for harmonic functions with respect to the form E-p.
Stichworte
Dirichlet form; Nonlinear Dirichlet form; p-Laplace operator; Choquet; capacity; Quasiregular mapping; Caccioppoli inequality
Erscheinungsjahr
2024
Zeitschriftentitel
Potential Analysis
ISSN
0926-2601
eISSN
1572-929X
Page URI
https://pub.uni-bielefeld.de/record/2990414

Zitieren

Beznea C, Beznea L, Röckner M. Nonlinear Dirichlet Forms Associated with Quasiregular Mappings. Potential Analysis. 2024.
Beznea, C., Beznea, L., & Röckner, M. (2024). Nonlinear Dirichlet Forms Associated with Quasiregular Mappings. Potential Analysis. https://doi.org/10.1007/s11118-024-10145-5
Beznea, Camelia, Beznea, Lucian, and Röckner, Michael. 2024. “Nonlinear Dirichlet Forms Associated with Quasiregular Mappings”. Potential Analysis.
Beznea, C., Beznea, L., and Röckner, M. (2024). Nonlinear Dirichlet Forms Associated with Quasiregular Mappings. Potential Analysis.
Beznea, C., Beznea, L., & Röckner, M., 2024. Nonlinear Dirichlet Forms Associated with Quasiregular Mappings. Potential Analysis.
C. Beznea, L. Beznea, and M. Röckner, “Nonlinear Dirichlet Forms Associated with Quasiregular Mappings”, Potential Analysis, 2024.
Beznea, C., Beznea, L., Röckner, M.: Nonlinear Dirichlet Forms Associated with Quasiregular Mappings. Potential Analysis. (2024).
Beznea, Camelia, Beznea, Lucian, and Röckner, Michael. “Nonlinear Dirichlet Forms Associated with Quasiregular Mappings”. Potential Analysis (2024).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar