A nonparametric proportional risk model to assess a treatment effect in time-to-event data
Ameis L, Kuss O, Hoyer A, Möllenhoff K (2024)
Biometrical Journal 66(4): e2300147.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ameis, Lucia;
Kuss, Oliver;
Hoyer, AnnikaUniBi ;
Möllenhoff, Kathrin
Abstract / Bemerkung
Time-to-event analysis often relies on prior parametric assumptions, or, if a semiparametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk (RR), the ratio of the cumulative distribution functions. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new nonparametric model to directly estimate the RR of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on all-causemortality. © 2024 The Authors. Biometrical Journal published by Wiley‐VCH GmbH.
Erscheinungsjahr
2024
Zeitschriftentitel
Biometrical Journal
Band
66
Ausgabe
4
Art.-Nr.
e2300147
eISSN
1521-4036
Page URI
https://pub.uni-bielefeld.de/record/2990177
Zitieren
Ameis L, Kuss O, Hoyer A, Möllenhoff K. A nonparametric proportional risk model to assess a treatment effect in time-to-event data. Biometrical Journal. 2024;66(4): e2300147.
Ameis, L., Kuss, O., Hoyer, A., & Möllenhoff, K. (2024). A nonparametric proportional risk model to assess a treatment effect in time-to-event data. Biometrical Journal, 66(4), e2300147. https://doi.org/10.1002/bimj.202300147
Ameis, Lucia, Kuss, Oliver, Hoyer, Annika, and Möllenhoff, Kathrin. 2024. “A nonparametric proportional risk model to assess a treatment effect in time-to-event data”. Biometrical Journal 66 (4): e2300147.
Ameis, L., Kuss, O., Hoyer, A., and Möllenhoff, K. (2024). A nonparametric proportional risk model to assess a treatment effect in time-to-event data. Biometrical Journal 66:e2300147.
Ameis, L., et al., 2024. A nonparametric proportional risk model to assess a treatment effect in time-to-event data. Biometrical Journal, 66(4): e2300147.
L. Ameis, et al., “A nonparametric proportional risk model to assess a treatment effect in time-to-event data”, Biometrical Journal, vol. 66, 2024, : e2300147.
Ameis, L., Kuss, O., Hoyer, A., Möllenhoff, K.: A nonparametric proportional risk model to assess a treatment effect in time-to-event data. Biometrical Journal. 66, : e2300147 (2024).
Ameis, Lucia, Kuss, Oliver, Hoyer, Annika, and Möllenhoff, Kathrin. “A nonparametric proportional risk model to assess a treatment effect in time-to-event data”. Biometrical Journal 66.4 (2024): e2300147.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38785217
PubMed | Europe PMC
Suchen in