Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise

Hofmanová M, Luo X, Zhu R, Zhu X (2024)
Mathematische Annalen : s00208-024-02881-1.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hofmanová, MartinaUniBi; Luo, Xiaoyutao; Zhu, Rongchan; Zhu, Xiangchan
Abstract / Bemerkung
We consider a family of singular surface quasi-geostrophic equations partial derivative(t)theta + u center dot del theta = -nu(-Delta)(gamma/2)theta + (-Delta)(alpha/2) xi, u = del(perpendicular to)(-Delta)(-1/2) theta, on [0, infinity) x T-2, where nu >= 0, gamma is an element of[0,3/2), alpha is an element of[0,1/4) and xi is a space-time white noise. For the first time, we establish the existence of infinitely many non-Gaussian probabilistically strong solutions for every initial condition in C-eta, eta > 1/2; ergodic stationary solutions. The result presents a single approach applicable in the subcritical, critical as well as supercritical regime in the sense of Hairer (Invent Math 198(2):269-504, 2014). It also applies in the particular setting alpha = gamma/2 which formally possesses a Gaussian invariant measure. In our proof, we first introduce a modified Da Prato-Debussche trick which, on the one hand, permits to convert irregularity in time into irregularity in space and, on the other hand, increases the regularity of the linear solution. Second, we develop a convex integration iteration for the corresponding nonlinear equation which yields non-unique non-Gaussian solutions satisfying powerful global-in-time estimates and generating stationary as well as ergodic stationary solutions.
Erscheinungsjahr
2024
Zeitschriftentitel
Mathematische Annalen
Art.-Nr.
s00208-024-02881-1
ISSN
0025-5831
eISSN
1432-1807
Page URI
https://pub.uni-bielefeld.de/record/2990013

Zitieren

Hofmanová M, Luo X, Zhu R, Zhu X. Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise. Mathematische Annalen . 2024: s00208-024-02881-1.
Hofmanová, M., Luo, X., Zhu, R., & Zhu, X. (2024). Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise. Mathematische Annalen , s00208-024-02881-1. https://doi.org/10.1007/s00208-024-02881-1
Hofmanová, Martina, Luo, Xiaoyutao, Zhu, Rongchan, and Zhu, Xiangchan. 2024. “Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise”. Mathematische Annalen : s00208-024-02881-1.
Hofmanová, M., Luo, X., Zhu, R., and Zhu, X. (2024). Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise. Mathematische Annalen :s00208-024-02881-1.
Hofmanová, M., et al., 2024. Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise. Mathematische Annalen , : s00208-024-02881-1.
M. Hofmanová, et al., “Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise”, Mathematische Annalen , 2024, : s00208-024-02881-1.
Hofmanová, M., Luo, X., Zhu, R., Zhu, X.: Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise. Mathematische Annalen . : s00208-024-02881-1 (2024).
Hofmanová, Martina, Luo, Xiaoyutao, Zhu, Rongchan, and Zhu, Xiangchan. “Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise”. Mathematische Annalen (2024): s00208-024-02881-1.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar