Measures, modular forms, and summation formulas of Poisson type
Alfes C, Kiefer P, Mazáč J (2024)
arXiv:2405.15620.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
In this article, we show that Fourier eigenmeasures supported on spheres with
radii given by a locally finite sequence, which we call $k$-spherical measures,
correspond to Fourier series exhibiting a modular-type transformation behaviour
with respect to the metaplectic group. A familiar subset of such Fourier series
comprises holomorphic modular forms. This allows us to construct $k$-spherical
eigenmeasures and derive Poisson-type summation formulas, thereby recovering
formulas of a similar nature established by Cohn-Gon\c{c}alves, Lev-Reti, and
Meyer, among others. Additionally, we extend our results to higher dimensions,
where Hilbert modular forms yield higher-dimensional $k$-spherical measures.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv:2405.15620
Page URI
https://pub.uni-bielefeld.de/record/2989986
Zitieren
Alfes C, Kiefer P, Mazáč J. Measures, modular forms, and summation formulas of Poisson type. arXiv:2405.15620. 2024.
Alfes, C., Kiefer, P., & Mazáč, J. (2024). Measures, modular forms, and summation formulas of Poisson type. arXiv:2405.15620
Alfes, Claudia, Kiefer, Paul, and Mazáč, Jan. 2024. “Measures, modular forms, and summation formulas of Poisson type”. arXiv:2405.15620.
Alfes, C., Kiefer, P., and Mazáč, J. (2024). Measures, modular forms, and summation formulas of Poisson type. arXiv:2405.15620.
Alfes, C., Kiefer, P., & Mazáč, J., 2024. Measures, modular forms, and summation formulas of Poisson type. arXiv:2405.15620.
C. Alfes, P. Kiefer, and J. Mazáč, “Measures, modular forms, and summation formulas of Poisson type”, arXiv:2405.15620, 2024.
Alfes, C., Kiefer, P., Mazáč, J.: Measures, modular forms, and summation formulas of Poisson type. arXiv:2405.15620. (2024).
Alfes, Claudia, Kiefer, Paul, and Mazáč, Jan. “Measures, modular forms, and summation formulas of Poisson type”. arXiv:2405.15620 (2024).