Generalized Igusa functions and ideal growth in nilpotent Lie rings

Carnevale A, Schein MM, Voll C (2024)
Algebra and Number Theory 18(3): 537–582.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Carnevale, Angela; Schein, Michael M.; Voll, ChristopherUniBi
Abstract / Bemerkung
We introduce a new class of combinatorially defined rational functions and apply them to deduce explicit formulae for local ideal zeta functions associated to the members of a large class of nilpotent Lie rings which contains the free class -2 -nilpotent Lie rings and is stable under direct products. Our results unify and generalize a substantial number of previous computations. We show that the new rational functions, and thus also the local zeta functions under consideration, enjoy a self -reciprocity property, expressed in terms of a functional equation upon inversion of variables. We establish a conjecture of Grunewald, Segal, and Smith on the uniformity of normal zeta functions of finitely generated free class -2 -nilpotent groups.
Stichworte
subgroup growth; ideal growth; normal zeta functions; ideal zeta; functions; Igusa functions; combinatorial reciprocity theorems
Erscheinungsjahr
2024
Zeitschriftentitel
Algebra and Number Theory
Band
18
Ausgabe
3
Seite(n)
537–582
ISSN
1937-0652
eISSN
1944-7833
Page URI
https://pub.uni-bielefeld.de/record/2989461

Zitieren

Carnevale A, Schein MM, Voll C. Generalized Igusa functions and ideal growth in nilpotent Lie rings. Algebra and Number Theory. 2024;18(3): 537–582.
Carnevale, A., Schein, M. M., & Voll, C. (2024). Generalized Igusa functions and ideal growth in nilpotent Lie rings. Algebra and Number Theory, 18(3), 537–582. https://doi.org/10.2140/ant.2024.18.537
Carnevale, Angela, Schein, Michael M., and Voll, Christopher. 2024. “Generalized Igusa functions and ideal growth in nilpotent Lie rings”. Algebra and Number Theory 18 (3): 537–582.
Carnevale, A., Schein, M. M., and Voll, C. (2024). Generalized Igusa functions and ideal growth in nilpotent Lie rings. Algebra and Number Theory 18, 537–582.
Carnevale, A., Schein, M.M., & Voll, C., 2024. Generalized Igusa functions and ideal growth in nilpotent Lie rings. Algebra and Number Theory, 18(3), p 537–582.
A. Carnevale, M.M. Schein, and C. Voll, “Generalized Igusa functions and ideal growth in nilpotent Lie rings”, Algebra and Number Theory, vol. 18, 2024, pp. 537–582.
Carnevale, A., Schein, M.M., Voll, C.: Generalized Igusa functions and ideal growth in nilpotent Lie rings. Algebra and Number Theory. 18, 537–582 (2024).
Carnevale, Angela, Schein, Michael M., and Voll, Christopher. “Generalized Igusa functions and ideal growth in nilpotent Lie rings”. Algebra and Number Theory 18.3 (2024): 537–582.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar