Detecting Hate Speech In Multimodal Memes Using Vision-Language Models

Velioglu R (2021) .

Dissertation | Englisch
 
Download
OA 23.09 MB
Gutachter*in / Betreuer*in
Abstract / Bemerkung
Memes on the Internet are often harmless and sometimes amusing. The apparently innocent meme, though, becomes a multimodal form of hate speech when certain kinds of pictures, text, or variations of both are used – a hateful meme. The Hateful Memes Challenge is a one-of-a-kind competition that focuses on detecting hate speech in multimodal memes and proposes a new data collection with 10,000+ new examples of multimodal content. We use VisualBERT, which is also known as "BERT for vision and language" and Ensemble Learning to boost the performance. In the Hateful Memes Challenge, our solution received an AUROC of 0.811 and an accuracy of 0.765 on the challenge test set, placing us third out of 3,173 participants. The code is available at: *https://github.com/rizavelioglu/hateful_memes-hate_detectron*
Stichworte
computer vision; NLP; Vision-Language; challenge; hateful memes
Erscheinungsjahr
2021
Seite(n)
70
Page URI
https://pub.uni-bielefeld.de/record/2989295

Zitieren

Velioglu R. Detecting Hate Speech In Multimodal Memes Using Vision-Language Models.; 2021.
Velioglu, R. (2021). Detecting Hate Speech In Multimodal Memes Using Vision-Language Models.
Velioglu, Riza. 2021. Detecting Hate Speech In Multimodal Memes Using Vision-Language Models.
Velioglu, R. (2021). Detecting Hate Speech In Multimodal Memes Using Vision-Language Models.
Velioglu, R., 2021. Detecting Hate Speech In Multimodal Memes Using Vision-Language Models,
R. Velioglu, Detecting Hate Speech In Multimodal Memes Using Vision-Language Models, 2021.
Velioglu, R.: Detecting Hate Speech In Multimodal Memes Using Vision-Language Models. (2021).
Velioglu, Riza. Detecting Hate Speech In Multimodal Memes Using Vision-Language Models. 2021.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-05-10T12:58:57Z
MD5 Prüfsumme
927941c783df872be673d760528e6fab


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar