Compactness of integral operators and uniform integrability on measure spaces

Hansen W (2024)
Revue Roumaine de Mathématiques Pures et Appliquées 69(1): 11-16.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Let (E, epsilon, mu) be a measure space and let epsilon(+), epsilon(b) denote the set of all measurable numerical functions on E which are positive, bounded respectively. Moreover, let G: E x E -> [0, infinity] be measurable. We show that the set of all q is an element of epsilon(+) for which {G(x, center dot)q: x is an element of E} is uniformly integrable coincides with the set of all q is an element of epsilon(+) for which the mapping f bar right arrow G(fq) := integral G(center dot, y)f(y)q(y) d mu(y) is a compact operator on the space epsilon(b) (equipped with the sup-norm) provided each of these two sets contains strictly positive functions.
Stichworte
uniform integrability; compact operator; potential
Erscheinungsjahr
2024
Zeitschriftentitel
Revue Roumaine de Mathématiques Pures et Appliquées
Band
69
Ausgabe
1
Seite(n)
11-16
ISSN
0035-3965
eISSN
2343-774X
Page URI
https://pub.uni-bielefeld.de/record/2988951

Zitieren

Hansen W. Compactness of integral operators and uniform integrability on measure spaces. Revue Roumaine de Mathématiques Pures et Appliquées. 2024;69(1):11-16.
Hansen, W. (2024). Compactness of integral operators and uniform integrability on measure spaces. Revue Roumaine de Mathématiques Pures et Appliquées, 69(1), 11-16. https://doi.org/10.59277/RRMPA.2024.11.16
Hansen, Wolfhard. 2024. “Compactness of integral operators and uniform integrability on measure spaces”. Revue Roumaine de Mathématiques Pures et Appliquées 69 (1): 11-16.
Hansen, W. (2024). Compactness of integral operators and uniform integrability on measure spaces. Revue Roumaine de Mathématiques Pures et Appliquées 69, 11-16.
Hansen, W., 2024. Compactness of integral operators and uniform integrability on measure spaces. Revue Roumaine de Mathématiques Pures et Appliquées, 69(1), p 11-16.
W. Hansen, “Compactness of integral operators and uniform integrability on measure spaces”, Revue Roumaine de Mathématiques Pures et Appliquées, vol. 69, 2024, pp. 11-16.
Hansen, W.: Compactness of integral operators and uniform integrability on measure spaces. Revue Roumaine de Mathématiques Pures et Appliquées. 69, 11-16 (2024).
Hansen, Wolfhard. “Compactness of integral operators and uniform integrability on measure spaces”. Revue Roumaine de Mathématiques Pures et Appliquées 69.1 (2024): 11-16.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar