Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3
Gebauer A (2024)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download
Dissertation_Gebauer_Andreas.pdf
23.76 MB
Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Abstract / Bemerkung
Photoemission dynamics in solid-state materials can be observed in real-time via attosecond time-resolved photoelectron spectroscopy [1].
In this work *Reconstruction of Attosecond Beating By Interference of Two-photon Transitions* (RABBITT) [2] is applied to Bi*2*Te*3* and Bi*2*Se*3* crystals.
Here, the first experimental observation of photoemission delays between the two finestructure components of a core level band in a solid-state system is reported.
In Bi*2*Te*3* spin-orbit delays between photoemission from d*5/2* and d*3/2* initial states of Bi 5d and Te 4d core level bands of t*LS*(Bi 5d) = 30 +/- 13 as and t*LS*(Te 4d) = -39 +/- 18 as were measured at a central XUV photon energy of 92.2 +/- 0.4 eV.
Corresponding spin-orbit delays of Bi 5d and Se 3d in Bi*2*Se*3* are t*LS*(Bi5d) = 31 +/- 10 as and t*LS*(Se3d) = -93 +/- 83 as.
It is shown by solving the time-dependent Schrödinger equation for photoemission in Jellium-type model including electron-hole interaction and IR field penetration that photoelectron transport cannot account for the experimentally observed delays.
Instead, calculations indicate that RABBITT can probe large Eisenbud-Wigner-Smith (EWS) delays in the vicinity of Cooper minima.
A hydrogenic atom model is presented that yields intra-atomic spin-orbit delays in the same order of magnitude as the experimental observations.
However, *ab initio* single-configuration Dirac-Fock calculations do not predict a Cooper minimum in isolated Bi atoms at the aforementioned photon energy.
Since the crystal environment has a strong impact on photoemission final states in this energy regime, additional Cooper minima might appear in the photoemission transition matrices of Bi*2*Te*3* and Bi*2*Se*3*.
Moreover, the first experimental comparison between RABBITT and attosecond streaking spectroscopy on a solid target is reported.
Streaking experiments on Bi*2*Te*3* reveal a photoemission delay between Bi 5d and Te 4d bands of t*streaking* = 7 +/- 17 as [3].
If spin-orbit delays are not resolved, an effective RABBITT delay can be extracted.
The effective RABBITT delay between Bi 5d and Te 4d of t*eff*RABBITT = 4 +/- 14 as is in perfect agreement with the streaking delay.
Also in a one-dimensional toy model photoemission delays obtained from both methods agree with each other.
However, close to Cooper minima different delays are obtained by RABBITT and streaking because different XUV spectral distributions are involved.
Jahr
2024
Seite(n)
196
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2988927
Zitieren
Gebauer A. Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Bielefeld: Universität Bielefeld; 2024.
Gebauer, A. (2024). Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2988927
Gebauer, Andreas. 2024. Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Bielefeld: Universität Bielefeld.
Gebauer, A. (2024). Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Bielefeld: Universität Bielefeld.
Gebauer, A., 2024. Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3, Bielefeld: Universität Bielefeld.
A. Gebauer, Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3, Bielefeld: Universität Bielefeld, 2024.
Gebauer, A.: Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Universität Bielefeld, Bielefeld (2024).
Gebauer, Andreas. Spin-Orbit Delays in Photoemission from Bi2Te3 and Bi2Se3. Bielefeld: Universität Bielefeld, 2024.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Name
Dissertation_Gebauer_Andreas.pdf
23.76 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-04-29T12:15:57Z
MD5 Prüfsumme
54b567534d0fa96f99ce3425cdf0b42c