The De Giorgi method for local and nonlocal systems
Behn L, Diening L, Nowak SN, Scharle T (2024)
arXiv: 2404.04063.
Zeitschriftenaufsatz | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We extend the De Giorgi iteration technique to the vectorial setting. For this we replace the usual scalar truncation operator by a vectorial shortening operator. As an application, we prove local boundedness for local and nonlocal nonlinear systems. Furthermore, we show convex hull properties, which are a generalization of the maximum principle to the case of systems.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv: 2404.04063
Page URI
https://pub.uni-bielefeld.de/record/2988636
Zitieren
Behn L, Diening L, Nowak SN, Scharle T. The De Giorgi method for local and nonlocal systems. arXiv: 2404.04063. 2024.
Behn, L., Diening, L., Nowak, S. N., & Scharle, T. (2024). The De Giorgi method for local and nonlocal systems. arXiv: 2404.04063. https://doi.org/10.48550/ARXIV.2404.04063
Behn, Linus, Diening, Lars, Nowak, Simon Noah, and Scharle, Toni. 2024. “The De Giorgi method for local and nonlocal systems”. arXiv: 2404.04063.
Behn, L., Diening, L., Nowak, S. N., and Scharle, T. (2024). The De Giorgi method for local and nonlocal systems. arXiv: 2404.04063.
Behn, L., et al., 2024. The De Giorgi method for local and nonlocal systems. arXiv: 2404.04063.
L. Behn, et al., “The De Giorgi method for local and nonlocal systems”, arXiv: 2404.04063, 2024.
Behn, L., Diening, L., Nowak, S.N., Scharle, T.: The De Giorgi method for local and nonlocal systems. arXiv: 2404.04063. (2024).
Behn, Linus, Diening, Lars, Nowak, Simon Noah, and Scharle, Toni. “The De Giorgi method for local and nonlocal systems”. arXiv: 2404.04063 (2024).