EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation
Huang B, Cheng R, Li Z, Jin Y, Tan KC (2024)
IEEE Transactions on Evolutionary Computation: 1-1.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Huang, Beichen;
Cheng, Ran;
Li, Zhuozhao;
Jin, YaochuUniBi ;
Tan, Kay Chen
Abstract / Bemerkung
Inspired by natural evolutionary processes, Evolutionary Computation (EC) has established itself as a cornerstone of Artificial Intelligence. Recently, with the surge in data-intensive applications and large-scale complex systems, the demand for scalable EC solutions has grown significantly. However, most existing EC infrastructures fall short of catering to the heightened demands of large-scale problem solving. While the advent of some pioneering GPU-accelerated EC libraries is a step forward, they also grapple with some limitations, particularly in terms of flexibility and architectural robustness. In response, we introduce EvoX: a computing framework tailored for automated, distributed, and heterogeneous execution of EC algorithms. At the core of EvoX lies a unique programming model to streamline the development of parallelizable EC algorithms, complemented by a computation model specifically optimized for distributed GPU acceleration. Building upon this foundation, we have crafted an extensive library comprising a wide spectrum of 50+ EC algorithms for both single-and multi-objective optimization. Furthermore, the library offers comprehensive support for a diverse set of benchmark problems, ranging from dozens of numerical test functions to hundreds of reinforcement learning tasks. Through extensive experiments across a range of problem scenarios and hardware configurations, EvoX demonstrates robust system and model performances. EvoX is open-source and accessible at: https://github.com/EMI-Group/EvoX.
Stichworte
Scalable Evolutionary Computation;
GPU Acceleration;
Distributed Computing;
Neuroevolution;
Evolutionary Reinforcement Learning;
Statistics;
Sociology;
Libraries;
Computational modeling;
Task analysis;
Evolutionary computation;
Python
Erscheinungsjahr
2024
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Seite(n)
1-1
ISSN
1089-778X, 1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2988508
Zitieren
Huang B, Cheng R, Li Z, Jin Y, Tan KC. EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation. IEEE Transactions on Evolutionary Computation. 2024:1-1.
Huang, B., Cheng, R., Li, Z., Jin, Y., & Tan, K. C. (2024). EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation. IEEE Transactions on Evolutionary Computation, 1-1. https://doi.org/10.1109/TEVC.2024.3388550
Huang, Beichen, Cheng, Ran, Li, Zhuozhao, Jin, Yaochu, and Tan, Kay Chen. 2024. “EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation”. IEEE Transactions on Evolutionary Computation, 1-1.
Huang, B., Cheng, R., Li, Z., Jin, Y., and Tan, K. C. (2024). EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation. IEEE Transactions on Evolutionary Computation, 1-1.
Huang, B., et al., 2024. EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation. IEEE Transactions on Evolutionary Computation, , p 1-1.
B. Huang, et al., “EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation”, IEEE Transactions on Evolutionary Computation, 2024, pp. 1-1.
Huang, B., Cheng, R., Li, Z., Jin, Y., Tan, K.C.: EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation. IEEE Transactions on Evolutionary Computation. 1-1 (2024).
Huang, Beichen, Cheng, Ran, Li, Zhuozhao, Jin, Yaochu, and Tan, Kay Chen. “EvoX: A Distributed GPU-Accelerated Framework for Scalable Evolutionary Computation”. IEEE Transactions on Evolutionary Computation (2024): 1-1.