Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis

Eysholdt‐Derzsó E, Hause B, Sauter M, Schmidt-Schippers R (2024)
Plant, Cell & Environment.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Eysholdt‐Derzsó, Emese; Hause, Bettina; Sauter, Margret; Schmidt-Schippers, RomyUniBi
Abstract / Bemerkung
**Abstract**
Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system's adaptions to low‐oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE‐RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, aserfVIIseedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII‐driven counteraction of hypoxia‐induced inhibition of LR formation in an ABA‐dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA‐degrading ABA 8′‐hydroxylasesCYP707A1expression. RAP2.12 could activate thepCYC707A1:LUCreporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia‐induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII‐dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.

**Summary Statement**
ERFVII pathway actively maintains abscisic acid homoeostasis, enabling a partial control of lateral root development under hypoxic conditions.
Erscheinungsjahr
2024
Zeitschriftentitel
Plant, Cell & Environment
ISSN
0140-7791
eISSN
1365-3040
Page URI
https://pub.uni-bielefeld.de/record/2988501

Zitieren

Eysholdt‐Derzsó E, Hause B, Sauter M, Schmidt-Schippers R. Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis. Plant, Cell & Environment. 2024.
Eysholdt‐Derzsó, E., Hause, B., Sauter, M., & Schmidt-Schippers, R. (2024). Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis. Plant, Cell & Environment. https://doi.org/10.1111/pce.14914
Eysholdt‐Derzsó, Emese, Hause, Bettina, Sauter, Margret, and Schmidt-Schippers, Romy. 2024. “Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis”. Plant, Cell & Environment.
Eysholdt‐Derzsó, E., Hause, B., Sauter, M., and Schmidt-Schippers, R. (2024). Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis. Plant, Cell & Environment.
Eysholdt‐Derzsó, E., et al., 2024. Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis. Plant, Cell & Environment.
E. Eysholdt‐Derzsó, et al., “Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis”, Plant, Cell & Environment, 2024.
Eysholdt‐Derzsó, E., Hause, B., Sauter, M., Schmidt-Schippers, R.: Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis. Plant, Cell & Environment. (2024).
Eysholdt‐Derzsó, Emese, Hause, Bettina, Sauter, Margret, and Schmidt-Schippers, Romy. “Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis”. Plant, Cell & Environment (2024).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 38616485
PubMed | Europe PMC

Suchen in

Google Scholar