Well-posedness of stochastic partial differential equations with fully local monotone coefficients

Röckner M, Shang S, Zhang T (2024)
Mathematische Annalen .

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Röckner, MichaelUniBi; Shang, Shijie; Zhang, Tusheng
Abstract / Bemerkung
Consider stochastic partial differential equations (SPDEs) with fully local monotone coefficients in a Gelf and triple V subset of H subset of V-& lowast;: { dX(t) = A(t, X(t))dt + B(t, X(t))dW (t), t is an element of (0, T ], { X (0) = x is an element of H, where A : [0, T] x V -> V-& lowast;, B:[0, T] x V -> L-2(U, H) are measurable maps, L-2(U, H) is the space of Hilbert-Schmidt operators from U to H and W is a U-cylindrical Wiener process. Such SPDEs include many interesting models in applied fields like fluid dynamics etc. In this paper, we establish the well-posedness of the above SPDEs under fully local monotonicity condition solving a longstanding open problem. The conditions on the diffusion coefficient B(t,& sdot;) are allowed to depend on both the H-norm and V-norm. In the case of classical SPDEs, this means that B(& sdot;,& sdot;) could also depend on the gradient of the solution. The well-posedness is obtained through a combination of pseudo-monotonicity techniques and compactness arguments.
Stichworte
Primary 60H15; Secondary 35R60
Erscheinungsjahr
2024
Zeitschriftentitel
Mathematische Annalen
ISSN
0025-5831
eISSN
1432-1807
Page URI
https://pub.uni-bielefeld.de/record/2988486

Zitieren

Röckner M, Shang S, Zhang T. Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Mathematische Annalen . 2024.
Röckner, M., Shang, S., & Zhang, T. (2024). Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Mathematische Annalen . https://doi.org/10.1007/s00208-024-02836-6
Röckner, Michael, Shang, Shijie, and Zhang, Tusheng. 2024. “Well-posedness of stochastic partial differential equations with fully local monotone coefficients”. Mathematische Annalen .
Röckner, M., Shang, S., and Zhang, T. (2024). Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Mathematische Annalen .
Röckner, M., Shang, S., & Zhang, T., 2024. Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Mathematische Annalen .
M. Röckner, S. Shang, and T. Zhang, “Well-posedness of stochastic partial differential equations with fully local monotone coefficients”, Mathematische Annalen , 2024.
Röckner, M., Shang, S., Zhang, T.: Well-posedness of stochastic partial differential equations with fully local monotone coefficients. Mathematische Annalen . (2024).
Röckner, Michael, Shang, Shijie, and Zhang, Tusheng. “Well-posedness of stochastic partial differential equations with fully local monotone coefficients”. Mathematische Annalen (2024).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar