Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions

Hao Z, Röckner M, Zhang X (2024)
SIAM Journal on Mathematical Analysis 56(2): 2661-2713.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
In this work we show the strong convergence of propagation of chaos for the particle approximation of McKean-Vlasov SDEs with singular L-p-interactions as well as for the moderate interaction particle systems on the level of particle trajectories. One of the main obstacles is to establish the strong well-posedness of the SDEs for particle systems with singular interaction. To this end, we extend the results on strong well-posedness of Krylov and Rockner [Probab. Theory Related Fields, 131 (2005), pp. 154--196] to the case of mixed L-p-drifts, where the heat kernel estimates play a crucial role. Moreover, when the interaction kernel is bounded measurable, we also obtain the optimal rate of strong convergence, which is partially based on Jabin and Wang's entropy method [P. -E. Jabin and Z. Wang, J. Funct. Anal., 271 (2016), pp. 3588--3627] and Zvonkin's transformation.
Stichworte
propagation of chaos; McKean-Vlasov SDEs; Zvonkin's transformation; Girsanov's transformation; heat kernel estimates; entropy method
Erscheinungsjahr
2024
Zeitschriftentitel
SIAM Journal on Mathematical Analysis
Band
56
Ausgabe
2
Seite(n)
2661-2713
ISSN
0036-1410
eISSN
1095-7154
Page URI
https://pub.uni-bielefeld.de/record/2988477

Zitieren

Hao Z, Röckner M, Zhang X. Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions. SIAM Journal on Mathematical Analysis . 2024;56(2):2661-2713.
Hao, Z., Röckner, M., & Zhang, X. (2024). Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions. SIAM Journal on Mathematical Analysis , 56(2), 2661-2713. https://doi.org/10.1137/23M1556666
Hao, Zimo, Röckner, Michael, and Zhang, Xicheng. 2024. “Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions”. SIAM Journal on Mathematical Analysis 56 (2): 2661-2713.
Hao, Z., Röckner, M., and Zhang, X. (2024). Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions. SIAM Journal on Mathematical Analysis 56, 2661-2713.
Hao, Z., Röckner, M., & Zhang, X., 2024. Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions. SIAM Journal on Mathematical Analysis , 56(2), p 2661-2713.
Z. Hao, M. Röckner, and X. Zhang, “Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions”, SIAM Journal on Mathematical Analysis , vol. 56, 2024, pp. 2661-2713.
Hao, Z., Röckner, M., Zhang, X.: Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions. SIAM Journal on Mathematical Analysis . 56, 2661-2713 (2024).
Hao, Zimo, Röckner, Michael, and Zhang, Xicheng. “Strong Convergence of Propagation of Chaos for McKean–Vlasov SDEs with Singular Interactions”. SIAM Journal on Mathematical Analysis 56.2 (2024): 2661-2713.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar