Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling

Fang W, Du W, He R, Tang Y, Jin Y, Yen GG (2024)
IEEE Computational Intelligence Magazine 19(2): 61-76.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fang, Wenxuan; Du, Wei; He, Renchu; Tang, Yang; Jin, YaochuUniBi ; Yen, Gary G.
Abstract / Bemerkung
Gasoline blending scheduling uses resource allocation and operation sequencing to meet a refinery’s production requirements. The presence of nonlinearity, integer constraints, and a large number of decision variables adds complexity to this problem, posing challenges for traditional and evolutionary algorithms. This paper introduces a novel multiobjective optimization approach driven by a diffusion model (named DMO), which is designed specifically for gasoline blending scheduling. To address integer constraints and generate feasible schedules, the diffusion model creates multiple intermediate distributions between Gaussian noise and the feasible domain. Through iterative processes, the solutions transition from Gaussian noise to feasible schedules while optimizing the objectives using the gradient descent method. DMO achieves simultaneous objective optimization and constraint adherence. Comparative tests are conducted to evaluate DMO’s performance across various scales. The experimental results demonstrate that DMO surpasses state-of-the-art multiobjective evolutionary algorithms in terms of efficiency when solving gasoline blending scheduling problems.
Erscheinungsjahr
2024
Zeitschriftentitel
IEEE Computational Intelligence Magazine
Band
19
Ausgabe
2
Seite(n)
61-76
ISSN
1556-603X
eISSN
1556-6048
Page URI
https://pub.uni-bielefeld.de/record/2988376

Zitieren

Fang W, Du W, He R, Tang Y, Jin Y, Yen GG. Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling. IEEE Computational Intelligence Magazine. 2024;19(2):61-76.
Fang, W., Du, W., He, R., Tang, Y., Jin, Y., & Yen, G. G. (2024). Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling. IEEE Computational Intelligence Magazine, 19(2), 61-76. https://doi.org/10.1109/MCI.2024.3363980
Fang, Wenxuan, Du, Wei, He, Renchu, Tang, Yang, Jin, Yaochu, and Yen, Gary G. 2024. “Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling”. IEEE Computational Intelligence Magazine 19 (2): 61-76.
Fang, W., Du, W., He, R., Tang, Y., Jin, Y., and Yen, G. G. (2024). Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling. IEEE Computational Intelligence Magazine 19, 61-76.
Fang, W., et al., 2024. Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling. IEEE Computational Intelligence Magazine, 19(2), p 61-76.
W. Fang, et al., “Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling”, IEEE Computational Intelligence Magazine, vol. 19, 2024, pp. 61-76.
Fang, W., Du, W., He, R., Tang, Y., Jin, Y., Yen, G.G.: Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling. IEEE Computational Intelligence Magazine. 19, 61-76 (2024).
Fang, Wenxuan, Du, Wei, He, Renchu, Tang, Yang, Jin, Yaochu, and Yen, Gary G. “Diffusion Model-Based Multiobjective Optimization for Gasoline Blending Scheduling”. IEEE Computational Intelligence Magazine 19.2 (2024): 61-76.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar