spectre: an R package to estimate spatially‐explicit community composition using sparse data

Simpkins CE, Hanß S, Spangenberg M, Salecker J, Hesselbarth MHK, Wiegand K (2022)
Ecography 2022(12).

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.34 MB
Autor*in
Simpkins, C. E.; Hanß, S.; Spangenberg, MatthiasUniBi ; Salecker, J.; Hesselbarth, M. H. K.; Wiegand, K.
Abstract / Bemerkung
An understanding of how biodiversity is distributed across space is key to much of ecology and conservation. Many predictive modelling approaches have been developed to estimate the distribution of biodiversity over various spatial scales. Community modelling techniques may offer many benefits over single species modelling. However, techniques capable of estimating precise species makeups of communities are highly data intensive and thus often limited in their applicability. Here we present an R package, spectre, which can predict regional community composition at a fine spatial resolution using only sparsely sampled biological data. The package can predict the presences and absences of all species in an area, both known and unknown, at the sample site scale. Underlying the spectre package is a min‐conflicts optimisation algorithm that predicts species' presences and absences throughout an area using estimates of α‐, β‐ and γ‐diversity. We demonstrate the utility of the spectre package using a spatially‐explicit simulated ecosystem to assess the accuracy of the package's results. spectre offers a simple to use tool with which to accurately predict community compositions across varying scales, facilitating further research and knowledge acquisition into this fundamental aspect of ecology.
Erscheinungsjahr
2022
Zeitschriftentitel
Ecography
Band
2022
Ausgabe
12
ISSN
0906-7590
eISSN
1600-0587
Page URI
https://pub.uni-bielefeld.de/record/2988316

Zitieren

Simpkins CE, Hanß S, Spangenberg M, Salecker J, Hesselbarth MHK, Wiegand K. spectre: an R package to estimate spatially‐explicit community composition using sparse data. Ecography. 2022;2022(12).
Simpkins, C. E., Hanß, S., Spangenberg, M., Salecker, J., Hesselbarth, M. H. K., & Wiegand, K. (2022). spectre: an R package to estimate spatially‐explicit community composition using sparse data. Ecography, 2022(12). https://doi.org/10.1111/ecog.06272
Simpkins, C. E., Hanß, S., Spangenberg, Matthias, Salecker, J., Hesselbarth, M. H. K., and Wiegand, K. 2022. “spectre: an R package to estimate spatially‐explicit community composition using sparse data”. Ecography 2022 (12).
Simpkins, C. E., Hanß, S., Spangenberg, M., Salecker, J., Hesselbarth, M. H. K., and Wiegand, K. (2022). spectre: an R package to estimate spatially‐explicit community composition using sparse data. Ecography 2022.
Simpkins, C.E., et al., 2022. spectre: an R package to estimate spatially‐explicit community composition using sparse data. Ecography, 2022(12).
C.E. Simpkins, et al., “spectre: an R package to estimate spatially‐explicit community composition using sparse data”, Ecography, vol. 2022, 2022.
Simpkins, C.E., Hanß, S., Spangenberg, M., Salecker, J., Hesselbarth, M.H.K., Wiegand, K.: spectre: an R package to estimate spatially‐explicit community composition using sparse data. Ecography. 2022, (2022).
Simpkins, C. E., Hanß, S., Spangenberg, Matthias, Salecker, J., Hesselbarth, M. H. K., and Wiegand, K. “spectre: an R package to estimate spatially‐explicit community composition using sparse data”. Ecography 2022.12 (2022).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-04-05T10:11:31Z
MD5 Prüfsumme
01bc52b9b5f4be80b94e0be808ae4ce3


Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar