A graph neural network with negative message passing and uniformity maximization for graph coloring
Wang X, Yan X, Jin Y (2024)
Complex & Intelligent Systems 10: 11 Seiten.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s40747-024-01355-w.pdf
919.27 KB
Autor*in
Abstract / Bemerkung
Graph neural networks have received increased attention over the past years due to their promising ability to handle graph-structured data, which can be found in many real-world problems such as recommender systems and drug synthesis. Most existing research focuses on using graph neural networks to solve homophilous problems, and not much attention has been paid to heterophily-type problems. In this paper, we propose a graph network model for graph coloring, which is a class of representative heterophilous problems. Different from the message passing in conventional graph networks, we introduce negative message passing into a physics-inspired graph neural network for more effective information exchange in handling graph coloring problems. Moreover, a new term in the objective function taking into account the information entropy of nodes is suggested to increase the uniformity of the color assignment of each node, giving the neural network more chance to choose suitable colors for each node. Therefore, it could avoid the final solution getting stuck into the local optimum. Experimental studies are carried out to compare the proposed graph model with five state-of-the-art algorithms on ten publicly available graph coloring problems and d-regular graphs with up to 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>4$$\end{document} nodes, demonstrating the effectiveness of the proposed graph neural network.
Stichworte
Negative message passing;
Graph coloring problems;
Uniformity;
maximization;
Information entropy
Erscheinungsjahr
2024
Zeitschriftentitel
Complex & Intelligent Systems
Band
10
Seite(n)
11 Seiten
Urheberrecht / Lizenzen
ISSN
2199-4536
eISSN
2198-6053
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2988226
Zitieren
Wang X, Yan X, Jin Y. A graph neural network with negative message passing and uniformity maximization for graph coloring. Complex & Intelligent Systems. 2024;10:11 Seiten.
Wang, X., Yan, X., & Jin, Y. (2024). A graph neural network with negative message passing and uniformity maximization for graph coloring. Complex & Intelligent Systems, 10, 11 Seiten. https://doi.org/10.1007/s40747-024-01355-w
Wang, Xiangyu, Yan, Xueming, and Jin, Yaochu. 2024. “A graph neural network with negative message passing and uniformity maximization for graph coloring”. Complex & Intelligent Systems 10: 11 Seiten.
Wang, X., Yan, X., and Jin, Y. (2024). A graph neural network with negative message passing and uniformity maximization for graph coloring. Complex & Intelligent Systems 10, 11 Seiten.
Wang, X., Yan, X., & Jin, Y., 2024. A graph neural network with negative message passing and uniformity maximization for graph coloring. Complex & Intelligent Systems, 10, p 11 Seiten.
X. Wang, X. Yan, and Y. Jin, “A graph neural network with negative message passing and uniformity maximization for graph coloring”, Complex & Intelligent Systems, vol. 10, 2024, pp. 11 Seiten.
Wang, X., Yan, X., Jin, Y.: A graph neural network with negative message passing and uniformity maximization for graph coloring. Complex & Intelligent Systems. 10, 11 Seiten (2024).
Wang, Xiangyu, Yan, Xueming, and Jin, Yaochu. “A graph neural network with negative message passing and uniformity maximization for graph coloring”. Complex & Intelligent Systems 10 (2024): 11 Seiten.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s40747-024-01355-w.pdf
919.27 KB
Access Level
Open Access
Zuletzt Hochgeladen
2024-06-14T12:32:46Z
MD5 Prüfsumme
971f712004b10f31a5ad123a2df10975
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in