Nonuniqueness in law of stochastic 3D Navier-Stokes equations
Hofmanová M, Zhu R, Zhu X (2024)
Journal of the European Mathematical Society 26(1): 163-260.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Abstract / Bemerkung
We consider the stochastic Navier-Stokes equations in three dimensions and prove that the law of analytically weak solutions is not unique. In particular, we focus on three examples of a stochastic perturbation: an additive, a linear multiplicative and a nonlinear noise of cylindrical type, all driven by a Wiener process. In these settings, we develop a stochastic counterpart of the convex integration method introduced recently by Buckmaster and Vicol. This permits us to construct probabilistically strong and analytically weak solutions defined up to a suitable stopping time. In addition, these solutions fail to satisfy the corresponding energy inequality at a prescribed time with a prescribed probability. Then we introduce a general probabilistic construction used to extend the convex integration solutions beyond the stopping time and in particular to the whole time interval [0, infinity). Finally, we show that their law is distinct from the law of solutions obtained by Galerkin approximation. In particular, nonuniqueness in law holds on an arbitrary time interval [0, T], T > 0.
Stichworte
Stochastic Navier-Stokes equations;
nonuniqueness in law;
convex;
integration
Erscheinungsjahr
2024
Zeitschriftentitel
Journal of the European Mathematical Society
Band
26
Ausgabe
1
Seite(n)
163-260
ISSN
1435-9855
Page URI
https://pub.uni-bielefeld.de/record/2988225
Zitieren
Hofmanová M, Zhu R, Zhu X. Nonuniqueness in law of stochastic 3D Navier-Stokes equations. Journal of the European Mathematical Society. 2024;26(1):163-260.
Hofmanová, M., Zhu, R., & Zhu, X. (2024). Nonuniqueness in law of stochastic 3D Navier-Stokes equations. Journal of the European Mathematical Society, 26(1), 163-260. https://doi.org/10.4171/JEMS/1360
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. 2024. “Nonuniqueness in law of stochastic 3D Navier-Stokes equations”. Journal of the European Mathematical Society 26 (1): 163-260.
Hofmanová, M., Zhu, R., and Zhu, X. (2024). Nonuniqueness in law of stochastic 3D Navier-Stokes equations. Journal of the European Mathematical Society 26, 163-260.
Hofmanová, M., Zhu, R., & Zhu, X., 2024. Nonuniqueness in law of stochastic 3D Navier-Stokes equations. Journal of the European Mathematical Society, 26(1), p 163-260.
M. Hofmanová, R. Zhu, and X. Zhu, “Nonuniqueness in law of stochastic 3D Navier-Stokes equations”, Journal of the European Mathematical Society, vol. 26, 2024, pp. 163-260.
Hofmanová, M., Zhu, R., Zhu, X.: Nonuniqueness in law of stochastic 3D Navier-Stokes equations. Journal of the European Mathematical Society. 26, 163-260 (2024).
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. “Nonuniqueness in law of stochastic 3D Navier-Stokes equations”. Journal of the European Mathematical Society 26.1 (2024): 163-260.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in