Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents

Byun S-S, Lee H-S (2021)
The Quarterly Journal of Mathematics 72(4): 1191-1221.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Byun, Sun-Sig; Lee, Ho-SikUniBi
Abstract / Bemerkung
**Abstract**
We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.
Erscheinungsjahr
2021
Zeitschriftentitel
The Quarterly Journal of Mathematics
Band
72
Ausgabe
4
Seite(n)
1191-1221
ISSN
0033-5606
eISSN
1464-3847
Page URI
https://pub.uni-bielefeld.de/record/2988047

Zitieren

Byun S-S, Lee H-S. Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents. The Quarterly Journal of Mathematics. 2021;72(4):1191-1221.
Byun, S. - S., & Lee, H. - S. (2021). Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents. The Quarterly Journal of Mathematics, 72(4), 1191-1221. https://doi.org/10.1093/qmath/haaa067
Byun, Sun-Sig, and Lee, Ho-Sik. 2021. “Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents”. The Quarterly Journal of Mathematics 72 (4): 1191-1221.
Byun, S. - S., and Lee, H. - S. (2021). Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents. The Quarterly Journal of Mathematics 72, 1191-1221.
Byun, S.-S., & Lee, H.-S., 2021. Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents. The Quarterly Journal of Mathematics, 72(4), p 1191-1221.
S.-S. Byun and H.-S. Lee, “Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents”, The Quarterly Journal of Mathematics, vol. 72, 2021, pp. 1191-1221.
Byun, S.-S., Lee, H.-S.: Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents. The Quarterly Journal of Mathematics. 72, 1191-1221 (2021).
Byun, Sun-Sig, and Lee, Ho-Sik. “Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents”. The Quarterly Journal of Mathematics 72.4 (2021): 1191-1221.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar