Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth

Byun S-S, Lee H-S (2024)
International Mathematics Research Notices 2024(1): 423-461.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Byun, Sun-Sig; Lee, Ho-SikUniBi
Abstract / Bemerkung
We are concerned with weak solutions of elliptic equations involving measurable nonlinearities with Orlicz growth to address what would be the weakest regularity condition on the associated nonlinearity for the Calderón–Zygmund theory. We prove that the gradient of weak solution is as integrable as the nonhomogeneous term under the assumption that the nonlinearity is only measurable in one of the variables while it has a small BMO assumption in the other variables. To this end, we develop a nonlinear Moser-type iteration argument for such a homogeneous reference problem with one variable–dependent nonlinearity under Orlicz growth to establish $W^{1,q}$–regularity for every $q>1$. Our results open a new path into the comprehensive understanding of the problem with nonstandard growth in the literature of optimal regularity theory in highly nonlinear elliptic and parabolic equations.
Erscheinungsjahr
2024
Zeitschriftentitel
International Mathematics Research Notices
Band
2024
Ausgabe
1
Seite(n)
423-461
ISSN
1073-7928
eISSN
1687-0247
Page URI
https://pub.uni-bielefeld.de/record/2988042

Zitieren

Byun S-S, Lee H-S. Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth. International Mathematics Research Notices. 2024;2024(1):423-461.
Byun, S. - S., & Lee, H. - S. (2024). Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth. International Mathematics Research Notices, 2024(1), 423-461. https://doi.org/10.1093/imrn/rnad040
Byun, Sun-Sig, and Lee, Ho-Sik. 2024. “Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth”. International Mathematics Research Notices 2024 (1): 423-461.
Byun, S. - S., and Lee, H. - S. (2024). Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth. International Mathematics Research Notices 2024, 423-461.
Byun, S.-S., & Lee, H.-S., 2024. Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth. International Mathematics Research Notices, 2024(1), p 423-461.
S.-S. Byun and H.-S. Lee, “Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth”, International Mathematics Research Notices, vol. 2024, 2024, pp. 423-461.
Byun, S.-S., Lee, H.-S.: Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth. International Mathematics Research Notices. 2024, 423-461 (2024).
Byun, Sun-Sig, and Lee, Ho-Sik. “Optimal Regularity for Elliptic Equations With Measurable Nonlinearities Under Nonstandard Growth”. International Mathematics Research Notices 2024.1 (2024): 423-461.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar