Numerical approximation of Dynkin games with asymmetric information
Banas L, Ferrari G, Randrianasolo TA (2023) .
Preprint
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We propose an implementable, feedforward neural network-based structure preserving probabilistic numerical approximation for a generalized obstacle problem describing the value of a zero-sum differential game of optimal stopping with asymmetric information. The target solution depends on three variables: the time, the spatial (or state) variable, and a variable from a standard (I−1)-simplex which represents the probabilities with which the I possible configurations of the game are played. The proposed numerical approximation preserves the convexity of the continuous solution as well as the lower and upper obstacle bounds. We show convergence of the fully-discrete scheme to the unique viscosity solution of the continuous problem and present a range of numerical studies to demonstrate its applicability.
Erscheinungsjahr
2023
Page URI
https://pub.uni-bielefeld.de/record/2987708
Zitieren
Banas L, Ferrari G, Randrianasolo TA. Numerical approximation of Dynkin games with asymmetric information. 2023.
Banas, L., Ferrari, G., & Randrianasolo, T. A. (2023). Numerical approximation of Dynkin games with asymmetric information. https://doi.org/10.48550/ARXIV.2312.01847
Banas, Lubomir, Ferrari, Giorgio, and Randrianasolo, Tsiry Avisoa. 2023. “Numerical approximation of Dynkin games with asymmetric information”.
Banas, L., Ferrari, G., and Randrianasolo, T. A. (2023). Numerical approximation of Dynkin games with asymmetric information.
Banas, L., Ferrari, G., & Randrianasolo, T.A., 2023. Numerical approximation of Dynkin games with asymmetric information.
L. Banas, G. Ferrari, and T.A. Randrianasolo, “Numerical approximation of Dynkin games with asymmetric information”, 2023.
Banas, L., Ferrari, G., Randrianasolo, T.A.: Numerical approximation of Dynkin games with asymmetric information. (2023).
Banas, Lubomir, Ferrari, Giorgio, and Randrianasolo, Tsiry Avisoa. “Numerical approximation of Dynkin games with asymmetric information”. (2023).