Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission
Steinbach D, Ahrens PC, Schmidt M, Federbusch M, Heuft L, Lübbert C, Nauck M, Gründling M, Isermann B, Gibb S, Kaiser T (2024)
Clinical Chemistry 70(3): 506-515.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Steinbach, Daniel;
Ahrens, Paul C;
Schmidt, Maria;
Federbusch, Martin;
Heuft, Lara;
Lübbert, Christoph;
Nauck, Matthias;
Gründling, Matthias;
Isermann, Berend;
Gibb, Sebastian;
Kaiser, ThorstenUniBi
Abstract / Bemerkung
BACKGROUND: Timely diagnosis is crucial for sepsis treatment. Current machine learning (ML) models suffer from high complexity and limited applicability. We therefore created an ML model using only complete blood count (CBC) diagnostics.; METHODS: We collected non-intensive care unit (non-ICU) data from a German tertiary care centre (January 2014 to December 2021). Using patient age, sex, and CBC parameters (haemoglobin, platelets, mean corpuscular volume, white and red blood cells), we trained a boosted random forest, which predicts sepsis with ICU admission. Two external validations were conducted using data from another German tertiary care centre and the Medical Information Mart for Intensive Care IV database (MIMIC-IV). Using the subset of laboratory orders also including procalcitonin (PCT), an analogous model was trained with PCT as an additional feature.; RESULTS: After exclusion, 1 381 358 laboratory requests (2016 from sepsis cases) were available. The CBC model shows an area under the receiver operating characteristic (AUROC) of 0.872 (95% CI, 0.857-0.887). External validations show AUROCs of 0.805 (95% CI, 0.787-0.824) for University Medicine Greifswald and 0.845 (95% CI, 0.837-0.852) for MIMIC-IV. The model including PCT revealed a significantly higher AUROC (0.857; 95% CI, 0.836-0.877) than PCT alone (0.790; 95% CI, 0.759-0.821; P < 0.001).; CONCLUSIONS: Our results demonstrate that routine CBC results could significantly improve diagnosis of sepsis when combined with ML. The CBC model can facilitate early sepsis prediction in non-ICU patients with high robustness in external validations. Its implementation in clinical decision support systems has strong potential to provide an essential time advantage and increase patient safety. © Association for Diagnostics & Laboratory Medicine 2024.
Erscheinungsjahr
2024
Zeitschriftentitel
Clinical Chemistry
Band
70
Ausgabe
3
Seite(n)
506-515
eISSN
1530-8561
Page URI
https://pub.uni-bielefeld.de/record/2987693
Zitieren
Steinbach D, Ahrens PC, Schmidt M, et al. Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. Clinical Chemistry. 2024;70(3):506-515.
Steinbach, D., Ahrens, P. C., Schmidt, M., Federbusch, M., Heuft, L., Lübbert, C., Nauck, M., et al. (2024). Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. Clinical Chemistry, 70(3), 506-515. https://doi.org/10.1093/clinchem/hvae001
Steinbach, Daniel, Ahrens, Paul C, Schmidt, Maria, Federbusch, Martin, Heuft, Lara, Lübbert, Christoph, Nauck, Matthias, et al. 2024. “Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission”. Clinical Chemistry 70 (3): 506-515.
Steinbach, D., Ahrens, P. C., Schmidt, M., Federbusch, M., Heuft, L., Lübbert, C., Nauck, M., Gründling, M., Isermann, B., Gibb, S., et al. (2024). Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. Clinical Chemistry 70, 506-515.
Steinbach, D., et al., 2024. Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. Clinical Chemistry, 70(3), p 506-515.
D. Steinbach, et al., “Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission”, Clinical Chemistry, vol. 70, 2024, pp. 506-515.
Steinbach, D., Ahrens, P.C., Schmidt, M., Federbusch, M., Heuft, L., Lübbert, C., Nauck, M., Gründling, M., Isermann, B., Gibb, S., Kaiser, T.: Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. Clinical Chemistry. 70, 506-515 (2024).
Steinbach, Daniel, Ahrens, Paul C, Schmidt, Maria, Federbusch, Martin, Heuft, Lara, Lübbert, Christoph, Nauck, Matthias, Gründling, Matthias, Isermann, Berend, Gibb, Sebastian, and Kaiser, Thorsten. “Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission”. Clinical Chemistry 70.3 (2024): 506-515.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38431275
PubMed | Europe PMC
Suchen in