Convex Monotone Semigroups on Lattices of Continuous Functions

Denk R, Kupper M, Nendel M (2023)
Publications of the Research Institute for Mathematical Sciences 59(2): 393-421.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Denk, Robert; Kupper, Michael; Nendel, MaxUniBi
Abstract / Bemerkung
We consider convex monotone C-0-semigroups on a Banach lattice, which is assumed to be a Riesz subspace of a sigma-Dedekind complete Banach lattice. Typical examples include the space of all bounded uniformly continuous functions and the space of all continuous functions vanishing at infinity. We show that the domain of the classical generator of a convex semigroup is typically not invariant. Therefore, we propose alternative versions for the domain, such as the monotone domain and the Lipschitz set, for which we prove invariance under the semigroup. As a main result, we obtain the uniqueness of the semigroup in terms of an extended version of the generator. The results are illustrated with several examples related to Hamilton-Jacobi-Bellman equations, including nonlinear versions of the shift semigroup and the heat equation. In particular, we determine their symmetric Lipschitz sets, which are invariant and allow us to define the generators in a weak sense.
Stichworte
Convex semigroup; nonlinear Cauchy problem; Lipschitz set; monotone; generator; Hamilton-Jacobi-Bellman equation
Erscheinungsjahr
2023
Zeitschriftentitel
Publications of the Research Institute for Mathematical Sciences
Band
59
Ausgabe
2
Seite(n)
393-421
ISSN
0034-5318
eISSN
1663-4926
Page URI
https://pub.uni-bielefeld.de/record/2987533

Zitieren

Denk R, Kupper M, Nendel M. Convex Monotone Semigroups on Lattices of Continuous Functions. Publications of the Research Institute for Mathematical Sciences . 2023;59(2):393-421.
Denk, R., Kupper, M., & Nendel, M. (2023). Convex Monotone Semigroups on Lattices of Continuous Functions. Publications of the Research Institute for Mathematical Sciences , 59(2), 393-421. https://doi.org/10.4171/PRIMS/59-2-4
Denk, Robert, Kupper, Michael, and Nendel, Max. 2023. “Convex Monotone Semigroups on Lattices of Continuous Functions”. Publications of the Research Institute for Mathematical Sciences 59 (2): 393-421.
Denk, R., Kupper, M., and Nendel, M. (2023). Convex Monotone Semigroups on Lattices of Continuous Functions. Publications of the Research Institute for Mathematical Sciences 59, 393-421.
Denk, R., Kupper, M., & Nendel, M., 2023. Convex Monotone Semigroups on Lattices of Continuous Functions. Publications of the Research Institute for Mathematical Sciences , 59(2), p 393-421.
R. Denk, M. Kupper, and M. Nendel, “Convex Monotone Semigroups on Lattices of Continuous Functions”, Publications of the Research Institute for Mathematical Sciences , vol. 59, 2023, pp. 393-421.
Denk, R., Kupper, M., Nendel, M.: Convex Monotone Semigroups on Lattices of Continuous Functions. Publications of the Research Institute for Mathematical Sciences . 59, 393-421 (2023).
Denk, Robert, Kupper, Michael, and Nendel, Max. “Convex Monotone Semigroups on Lattices of Continuous Functions”. Publications of the Research Institute for Mathematical Sciences 59.2 (2023): 393-421.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar