A kernel-based analysis of Laplacian Eigenmaps
Wahl M (2024)
arXiv.2402.16481.
Preprint | Englisch
Download
2402.16481.pdf
351.27 KB
Autor*in
Einrichtung
Abstract / Bemerkung
Given i.i.d. observations uniformly distributed on a closed manifold
$\mathcal{M}\subseteq \mathbb{R}^p$, we study the spectral properties of the
associated empirical graph Laplacian based on a Gaussian kernel. Our main
results are non-asymptotic error bounds, showing that the eigenvalues and
eigenspaces of the empirical graph Laplacian are close to the eigenvalues and
eigenspaces of the Laplace-Beltrami operator of $\mathcal{M}$. In our analysis,
we connect the empirical graph Laplacian to kernel principal component
analysis, and consider the heat kernel of $\mathcal{M}$ as reproducing kernel
feature map. This leads to novel points of view and allows to leverage results
for empirical covariance operators in infinite dimensions.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv.2402.16481
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2987421
Zitieren
Wahl M. A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481. 2024.
Wahl, M. (2024). A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481
Wahl, Martin. 2024. “A kernel-based analysis of Laplacian Eigenmaps”. arXiv.2402.16481.
Wahl, M. (2024). A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481.
Wahl, M., 2024. A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481.
M. Wahl, “A kernel-based analysis of Laplacian Eigenmaps”, arXiv.2402.16481, 2024.
Wahl, M.: A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481. (2024).
Wahl, Martin. “A kernel-based analysis of Laplacian Eigenmaps”. arXiv.2402.16481 (2024).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
2402.16481.pdf
351.27 KB
Access Level
Open Access
Zuletzt Hochgeladen
2024-03-04T11:46:14Z
MD5 Prüfsumme
a2e3128254b77e187a7d7463c0c072a8