A kernel-based analysis of Laplacian Eigenmaps

Wahl M (2024)
arXiv.2402.16481.

Preprint | Englisch
 
Download
OA 351.27 KB
Abstract / Bemerkung
Given i.i.d. observations uniformly distributed on a closed manifold $\mathcal{M}\subseteq \mathbb{R}^p$, we study the spectral properties of the associated empirical graph Laplacian based on a Gaussian kernel. Our main results are non-asymptotic error bounds, showing that the eigenvalues and eigenspaces of the empirical graph Laplacian are close to the eigenvalues and eigenspaces of the Laplace-Beltrami operator of $\mathcal{M}$. In our analysis, we connect the empirical graph Laplacian to kernel principal component analysis, and consider the heat kernel of $\mathcal{M}$ as reproducing kernel feature map. This leads to novel points of view and allows to leverage results for empirical covariance operators in infinite dimensions.
Erscheinungsjahr
2024
Zeitschriftentitel
arXiv.2402.16481
Page URI
https://pub.uni-bielefeld.de/record/2987421

Zitieren

Wahl M. A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481. 2024.
Wahl, M. (2024). A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481
Wahl, Martin. 2024. “A kernel-based analysis of Laplacian Eigenmaps”. arXiv.2402.16481.
Wahl, M. (2024). A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481.
Wahl, M., 2024. A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481.
M. Wahl, “A kernel-based analysis of Laplacian Eigenmaps”, arXiv.2402.16481, 2024.
Wahl, M.: A kernel-based analysis of Laplacian Eigenmaps. arXiv.2402.16481. (2024).
Wahl, Martin. “A kernel-based analysis of Laplacian Eigenmaps”. arXiv.2402.16481 (2024).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-03-04T11:46:14Z
MD5 Prüfsumme
a2e3128254b77e187a7d7463c0c072a8


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2402.16481

Suchen in

Google Scholar